Corpus Architecture

1. Introduction
The architecture chosen for a certain corpus refers to the conceptual division of different

types of objects contained in a corpus, such as texts, annotations and metadata, and the
data model containing these objects, e.g. using trees or graphs to connect (parts of) words
or documents, and the types of analyses one can apply to each object. This chapter
presents some of the key characteristics distinguishing different corpus architectures. The
focus is on abstract data models and the ways in which they are realized in concrete
formats for corpus representation, as well as consequences for the usability of the
resulting corpora.

The overview of fundamental notions in Section 2 is divided into three major
sections and begins with an analysis of issues in corpus macro structure, such as dividing
corpora into subcorpora, attaching metadata and alignment in parallel corpora. The
discussion then moves on to detailed issues of document structure, looking at different
types of primary data, such as textual data, transcribed dialogue with or without multiple
overlapping speakers, and multimodal data. Although spoken language is considered
‘primary’ in many senses, corpus architectures usually treat aligned audio/video
information (A/V for short) as a type of annotation, and this can have consequences for
corpus architecture. As we will explore below, notions such as adjacent tokens,
overlapping data, and multiple or conflicting tokenization can arise which have complex
effects (see Sauer & Liudeling 2016). The third subsection completes the overview by
discussing architectures for simple textual annotations and more complex annotation
graphs (roughly, webs of interconnected analyses), and the ways in which they are
encoded. The choice of architecture determines how much information can be expressed,
from simple token annotations, such as part of speech (POS) tags, to complex multilayer
corpora with conflicting hierarchies encoding syntax, semantics and more in dozens of
annotation layers.

Section 3 presents two practical case studies using existing corpora. The first,

examining the GUM corpus (Georgetown University Multilayer corpus, Zeldes 2017),

“ 1 would like to thank the editors and two anonymous reviewers for valuable comments on previous
versions of this chapter; the usual disclaimers apply.

illustrates aspects of annotation graph modeling, such as positional and structural
attributes, span annotations versus hierarchical trees (e.g. syntax trees), and graphs
involving pointing relations (for example coreference annotation or discourse relations).
These annotation graphs coalesce to form a merged multilayer corpus containing as many
as 50 different annotation types applied to each sentence in the corpus. The second study
focuses on encoding analyses of non-native language in a learner corpus. Using the
MERLIN corpora (Boyd et al. 2014), we discuss using original learner texts and
alternative corrected texts, known as target hypotheses, in tandem with error annotations.
This creates challenges for the definitions of tokens and other types of word
segmentations, with implications for using complex data models with non-standard
language.

Section 4 critically outlines some specific formats and methods used by Natural
Language Processing (NLP) and manual annotation tools, and compares popular
standards in terms of their expressive power, strengths and shortcomings. For building
complex corpora, especially in the multilayer annotation graph paradigm, a key tension is
discussed between concurrently maintaining multiple, comparatively simple formats for
different annotation types, and stand-off XML formats representing ‘everything at once’.

Section 5 concludes with pointers to useful resources and suggestions for further reading.

2. Fundamentals

2.1 Corpus macro-structure
If a corpus is “a collection of pieces of language that are selected and ordered according

to explicit linguistic criteria in order to be used as a sample of the language”,* then the
first component of corpus architecture, before considering analyses within each ‘piece’, is
the organization of the collection of ‘pieces of language’. A minimal corpus macro-
structure is therefore a single or ‘top-level’ corpus object, directly containing the ‘pieces’,
which can be referred to as ‘documents’, as shown on the left in Figure 1. Documents are
not necessarily complete texts: for example, they can be samples of n tokens (see Biber
1993 on sample size selection), a situation that can arise due to copyright restrictions

forbidding full publication of the source text, or due to resource limitations when only a

! Definition from EAGLES, the Expert Advisory Group on Language Engineering Standards; see Calzolari
& McNaught (1994), and McEnery et al. (2006:4-5) for discussion.

2

subpart of a longer text can be feasibly annotated in a given project. Documents usually
correspond to contiguous text taken from some source, with few exceptions.? In many
corpus search architectures (see Section 4), the definition of the document plays an
important role in determining the boundaries of the search space for queries: often, if
users want to search for certain words ‘within 10 words’, they intend for the result to
come from one document, and would not want to see a search result containing the last
word of one text followed by a word from the beginning of an unrelated text. Although
this issue is often overlooked, the definition of the document can thus affect search
results. For example, in a corpus of the works of Charles Dickens, what are the
boundaries of a document? A single book? Or each chapter within each book? While
each definition may seem reasonable, they are not identical.

Very often, corpora are constructed according to design criteria which assign
documents to different categories (see the chapter on Corpus Compilation). In these
cases, the most common corpus macro-structure is the one in the middle of Figure 1: a
tree of subcorpora, each containing documents. Subcorpora can be arranged
hierarchically, for example a corpus can have written and spoken subcorpora (e.g.
corpora in the International Corpus of English, ICE, Greenbaum 1996) and the latter
subcorpus may further contain conversation and broadcast news subcorpora, before
reaching actual documents. In more complex designs, shown on the right of Figure 1,
criteria cross-classify across documents, meaning that documents belong to several
categories at once. This is often achieved by labeling documents with metadata
categories, with the intention of creating dynamic or virtual subcorpora. For example,
metadata may be used to classify spoken data as a conversation or monologue, and at the
same time as private or public speech. It is then possible to dynamically construct a

subcorpus containing all private spoken data, or all monologue data, etc.

2 One example could be in the case of historical corpora of fragmentary texts, in which a document
corresponds to everything we have from a certain work which was originally a contiguous text.

3

corpus corpus corpus

/\ rlvate
spoken written p
subcorpus subcorpus

/\ monologue Iogue .
Y
= E

Figure 1. A minimal, flat corpus macro-structure (A), a typical subcorpus tree (B), and a

document graph created by cross-classifying metadata (C).

The term virtual subcorpus is also used sometimes to refer to querying subsets of earlier
queries, i.e. one can dynamically design a ‘subcorpus’ containing all documents matching
an arbitrary query (e.g. the subcorpus of documents containing the word ‘snow’), and
work further with these documents (see Kupietz et al. 2010: 1852).

While the structures in Figure 1 cover the bulk of corpus resources, some more
complex situations deserve special mention. Firstly, in parallel corpora (see Chapter 12 in
this volume) containing aligned text, the concept of document is further complicated.
Alignment is most often the result of translation corpora, in which each document may
exist in more than one language, with alignment either simply at the document level, or
more fine-grained forms of alignment, such as section, paragraph, sentence or word
alignment (see Romary & Bonhomme 2000 for an extensive discussion). There are also
more unusual types of alignment, such as partial alignment (e.g. multilingual corpora of
parallel Wikipedia articles which are similar in content, but not actual translations, Smith
et al. 2010), corpora aligning editing differences (e.g. corpora of aligned draft revisions,
Lee et al. 2015) or corpora containing non-native texts next to aligned target hypotheses
of what native annotators believe a non-native speaker is trying to say in the standard
target language (see Reznicek et al. 2013). All of these situations complicate the notion of
a tree-like graph with simple documents as leaves: in such cases, the leaves themselves

may have a complex macro-structure.

2.2 Primary data and text representation
As collections of textual data (in the broad sense, whether written, or transcribed from

speech, see Wichmann 2008, or even multimodal corpora of sign language utterances, see

4

Crasborn & Sloetjes 2008, Schembri et al. 2013), the most fundamental concern in
modelling corpora is how text is represented within each document. | will refer to the text
being represented as the ‘primary data’.®> While this may seem uncomplicated, it is
actually a substantial challenge in many cases. In the first instance, corpus architectures
differ in whether or not, or to what extent, they preserve features of the original source
data. One of the most frequent violations of primary data integrity in written corpora is
white-space preservation. Consider the following example, as formatted, where
underscores mark otherwise invisible spaces, and the arrow indicates a tab symbol:

(1) Mark agreed. This was, then, the end._
|-->But | cannot accept it._ _

Early corpus architectures were aimed at capturing and separating word form tokens,
using spaces between token units, often followed by a separator and annotations, as
in (2), where a separator /> marks the beginning of a POS tag (see also the chapter on
Corpus Annotation).

(2) Mark/NNP agreed/VBD ./SENT This/DT was/VBD ,/, then/RB ,/, the/DT end/NN
ISENT But/RB I/PRP can/MD not/RB accept/VB it/PRP ./SENT

For many linguistic research questions, the representation in (2) is adequate, for example
for vocabulary studies: one can extract type/token ratios to study vocabulary size in
different texts, find vocabulary preferences of certain authors, etc.

However for many other purposes, the loss of information about the original text

from (1) is critical. To name but a few examples:

® Note that although A/V signals in multimodal corpora logically precede their transcription, corpus
architectures usually implement aligned A/V signals as annotations anchored to the transcription using
timestamps. In other words, in much the same way as the POS tag ‘noun’ might apply to the position in the
text of a word like ‘bread’, a recording of this word is also a type of datum that can be thought of as
happening at the point in which ‘bread’ is uttered. In continuous primary data representations (see below),
A/V timestamp alignment therefore ‘tiles’ the text (no span of audio is left without alignment to some
token).

- Tokens with ambiguous spacing: both ‘can not’ and ‘cannot’ are usually
tokenized as two units, but to study variation between these forms, one needs to
represent whitespace somehow

- Training automatic sentence/document/subsection splitters: Position and
number of spaces, as well as presence of tab characters are very strong cues for
such programs. For example TextTiling, a classic approach to automatic
document segmentation, makes use of tabs as predictors (Hearst 1997).

- Stylometry and authorship attribution: even subtle cues found in whitespace
can distinguish authors and styles. For example, US authors are much more likely
to use double spaces after a sentence final period than UK authors, and specific
combinations of whitespace practices can sometimes uniquely identify authors
(see Kredens & Coulthard 2012:506-507). Proportion of white space has also

been used in authorship and plagiarism detection (Canales et al. 2011).

Whitespace and other features of the original primary data can therefore be important,
and some corpus architectures employ formats which preserve and separate the
underlying data from processes of tokenization and annotation, often using ‘stand-off’
XML formats. In stand-off formats, different layers of information are stored in separate
files using a referencing mechanism which allows us, for example, to leave an original
text file unchanged. One can then add e.g. POS annotations in a separate file specifying
the character offsets in the text file at which the annotations apply (e.g. marking that a
NOUN occurred between characters 4-10; see Tools and Resources for more details).

A second important issue in representing language data is the tokenization itself,
which requires detailed guidelines, and is usually executed automatically, possibly with
manual correction (see Schmid 2008 for an overview). Although a working definition of
‘tokens’ often equates them with “words, numbers, punctuation marks, parentheses,
quotation marks, and similar entities” (Schmid 2008:527), a more precise definition of
tokens is simply “the smallest unit of a corpus” (Krause et al. 2012:2), where units can
also be smaller than a word, e.g. in a corpus treating each syllable as a token. In other
words, tokens are minimal, indivisible or ‘atomic’ units, and any unit to which we want

to apply annotations cannot be smaller than a token (see Section 3.2).

In English, word forms and tokens usually coincide, and tokenization is closely
related to prevalent part of speech tagging guidelines (the Penn tag set, Santorini 1990
and CLAWS, Garside et al. 1987, both ultimately going back to the Brown tag set,
Kucera & Francis 1967). However, modals, negations and other items which sometimes
appear as clitics are normally tokenized apart, as in the clitics '/ and »’t in (3) and (4).
These are represented as separate in the ‘tok’ (token) rows of Figure 2, but are fused on
the ‘wf” (word form) level. In (3), separating the clitic '/l allows us to tag it as a modal on
the ‘pos’ layer (MD), just like a normal will. The other half of the orthographic sequence
I’ll is retained unproblematically as I. In (4), by contrast, separating the negation n 'z
produces a segment wo, which is not a ‘normal’ word in English, but is nevertheless

tagged as a modal.

(3) I'lldo it
(4) I won't do it then

In order to make all instances of the lexical item will findable, some corpora rely
on lemmatization (the lemma of all of these is will), while other corpora use explicit
normalization. This distinction becomes more crucial in corpora with non-standard
orthography, as in example (5), featuring the contraction /'m a (frequent in, but not
limited to African American Vernacular English, Green 2002:196).

(5) I'mado it (i.e. 'm going to do it)

(3) wf Il do it
norm | | will do it
pos | PRP MD VB PRP
tok | | Il do it
(4)wf |1 won’t do it then
norm | | will not do it then
pos | PRP MD RB VB PRP RB
tok | | wo n’t do it then

(5) wf 'm a do it

norm | | am going to do it
pos | PRP VBP VBG TO VB PRP
tok | | 'm a do it

Figure 2. Tokenization, normalization and POS tags for word forms in (3)-(5).

This last example clearly shows that space-delimited orthographic borders, tokenization,
and annotations at the word form level may not coincide. To do justice to examples such
as (5), a corpus architecture must be capable of mapping word forms and annotations to
any number of tokens, in the sense of minimal units. In some cases these tokens may
even be empty, as in the position following a in the ‘tok’ layer for (5) — what matters is
not necessarily that ‘tok’ contains some segmentation of the text in ‘wf’, but rather that
the positions and borders that are required for the annotation table are delimited correctly
in order to allow the interpretation of a as corresponding to the ‘norm’ sequence going
(tagged VBG) and to (tagged TO), assuming this is the desired analysis.”

For multimodal data in which speakers may overlap, the situation is even more
complex and an architecture completely separating the concepts of tokens as minimal

units and word forms becomes necessary. An example is shown in Figure 3.

spkA | | see but actually I
posA | PRP VBP PRP RB PRP
spkB you know
posB PRP | VBP
events [phone rings]
time | 00:03.1 00:04 | 00:04.2 | 00:05.6 | 00:07 | 00:07.5 | 00:08 | 00:08.1

Figure 3. Multiple layers for dialog data with a minimally granular timeline.

The example shows several issues: towards the end, two speakers overlap with word

forms that only partially occur at the same time, meaning that borders are needed

* Some architectures go even further and use an ‘empty’ token layer, using tokens solely as ordered
positions or time-line markers, not containing text (e.g. the RIDGES corpus, Odebrecht et al. 2016, or
REM, Klein & Dipper 2016). In such cases, tools manipulating the data can recover the covered text for
each position from an aligned primary text.

corresponding to these offsets; in the middle of the excerpt, there is a moment of silence,
which has a certain duration; and finally, there is an extra linguistic event (a phone
ringing) which takes place in part during speaker A’s dialogue, and in part during the
silence between speech acts.

An architecture using the necessary minimal units can still represent even this
degree of complexity, provided that one draws the correct borders at the minimal
transitions between events, and add higher level spans for each layer of information. In
cases like these, the concept of minimal token is essentially tantamount to timeline
indices, and if these have explicit references to time (as in the seconds and milliseconds
in the ‘time’ layer of Figure 3), then they can be used for A/V signal alignment as well.
An architecture of this kind is used by concrete speech corpus transcription tools such as
ELAN (Brugman & Russel 2004) or EXMARaLDA (Schmidt & Waorner 2009), but can
more generally be thought of as an annotation graph (see the next section).

A final consideration in cases such as these is the anchoring or coupling of
specific layers of information in the data model: in the example above, the two ‘pos’
layers belong to the different speakers. A user searching for all word forms coinciding
with a verbal tag in the corpus would be very surprised to find the word I, which might be
found if all VBP tags coinciding with a word form are retrieved (since the second |
overlaps with the other speaker’s word know). What is meant in such situations is to only
look at combinations of POS and word form information from either speaker A or
speaker B. In other situations, however, one might want to look at any layers containing
some speaker (e.g. search for anyone saying um), in which case some means of capturing
the notion of ‘any transcription layer’ is required. These concepts of connecting
annotation layers (posA belongs to spkA) and applying multiple segmentations to the

data will be discussed below in the context of graph models for corpus annotations.

2.3 Data models for document annotations
The central concern of annotations is ‘adding interpretative, linguistic information to an

electronic corpus’ (Leech 1997:2), such as adding POS tags to word forms (see Chapter 3
on Corpus Annotation). However, as we have seen, one may also want to express
relationships between annotations, grouping together multiple units into larger spans,

building structures on top of these, and annotating them in turn. For example, multiple

9

minimal tokens annotated as morphemes may be grouped together to delineate a complex
word form, several such word forms may be joined into phrases or sentences, and each of
these may carry annotations as well. Additionally, some annotations ‘belong together’ in
some sense, for example by relating to the same speaker in a dialogue. If a document
contains these kinds of data, the resulting structure is then no longer a flat table such as
Figure 2, but rather a graph with explicit hierarchical connections. For planning and
choosing a fitting corpus architecture, it is important to understand the components of
annotation graphs at an abstract level, since even if individual XML formats under
consideration for a corpus vary substantially (see Section 5.1), at an underlying level, the
most important factor is which elements of an annotation graph they can or cannot
represent.

At its most general formulation, a graph is just a collection of nodes connected by
edges: for example an ordered sequence of words, each word connected to the next, with
some added nodes connected to multiple words (e.g. a sentence node grouping some
words, or smaller phrase nodes). Often these nodes and edges will be annotated with
labels, which usually have a category name and a value (e.g. POS=NOUN); in some
complex architectures, annotations can potentially include more complex data types, such
as hierarchical feature structures (see 1SO24612). Additionally, some data models add
grouping mechanisms to annotation graphs, often referred to as ‘annotation layers’,
which can be used to lump together annotations that are somehow related.”

Given the basic building blocks ‘nodes’, ‘edges’, ‘annotations’ and ‘layers’, there
are many different constraints that can be imposed on the combinations of these elements.
Some data models allow us to attach annotations only to nodes, or also to edges; some
data models even allow annotations of annotations (e.g. Dipper 2005), which opens up
the possibility of annotation sub-graphs expressing, for example, provenance (i.e. who or

what created an annotation and when, see Eckart de Castilho et al. 2017) or certainty of

> In some formats, XML namespaces form layers to distinguish annotations from different inventories, such
as tags from the TEI vocabulary (Text Encoding Initiative, http://www.tei-c.org/) versus corpus specific
tags (see Hoder 2012 for an example). A formal concept of layers to group annotations is provided in the
Salt data model (Zipser & Romary 2010), and UIMA Feature Structure Types in the NLP tool-chain DKPro
(Eckart de Castilno & Gurevyich 2014). NLP tool chain components are often thought of as creating
implicit layers (e.g. a parser component adds a syntactic annotation layer), see e.g. GATE Processing
Resources or CREOLE Modules in GATE (Cunningham et al. 1997), Annotators components in CoreNLP
(Manning et al. 2014) or WebLicht Components (Hinrichs et al. 2010).

10

http://www.tei-c.org/

annotations (e.g. an ‘uncertain’ label, or numerical likelihood estimate of annotation
accuracy). Another annotation model constraint is whether multiple instances of the same
annotation in the same position are allowed (e.g. conflicting versions of the same
annotation, such as multiple POS tags or even syntax trees, see Kountz et al. 2008). This
can be relevant not only for fine-grained manual annotations, but also for the application
and comparison of multiple automatic tools (several POS taggers, parsers, etc.). Layers
too can have different constraints, including whether layers can be applied only to nodes,
or also to edges and annotations, and whether layer-element mapping is 1:1 or whether an
element can belong to multiple layers. Search engines sometimes organize visualizations
by layers, i.e. using a dedicated syntax tree visualization for a ‘syntax’ layer, and other
modules for annotations in other layers.

Basic annotation graphs, such as syntactically annotated treebanks, can be
described in simple inline formats. However, as the corpus architecture grows more
complex or ‘multilayered’, the pressure to separate annotations into different files and/or
more complex formats grows. To see why, one can consider the Penn Treebank’s
(Marcus et al. 1993) bracketing format, which was developed to encode constituent
syntax trees. The format uses special symbols to record not only the primary text, but also
empty categories, such as pro (for dropped subject pronouns), PRO (for infinitive
subjects), traces (for postulated movement), and more. In the following tree excerpt from
the Wall Street Journal portion of the Penn Treebank, there are two ‘empty categories’, at
the two next to last tokens: a zero ‘0’ tagged as -NONE- standing in for an omitted that
(i.e. researchers said *that*), and a trace ‘*T*-2’°, indicating that a clause has been
fronted (i.e. the text is “crocidolite is ... resilient ..., researchers said’, which can be

considered to be fronted from a form such as “researchers said the crocidolite...”):

((s
(S-TPC-2
(NP-SBJ

(NP (NN crocidolite))
G o))

(VP (VBZ is)

11

(ADJP-PRD (RB unusually) (JJ resilient))

G o)
(NP-SBJ (NNS researchers))

(VP (VBD said)
(SBAR (-NONE- 0)
(S (-NONE- *T*-2))))
-

This syntax tree defines a hierarchically nested annotation graph, with vertices (V)
corresponding to the tokens and bracketing nodes, and annotations corresponding to parts
of speech and syntactic category labels (NP, VP etc.). However much of the information
is rather implicit; the edges of the tree are marked by nested brackets: the NP dominates
the noun ‘crocidolite’, etc. Annotations are pure value labels (VBD, VP etc.), and one
must infer readings for their keys (POS, phrase category). Another ‘edge’ represented by
co-indexing the trace with its location at S-TPC-2 depends on our understanding that
T-2 is not just a normal token (marked only by a special POS tag -NONE-). This is
especially crucial for the dropped ‘that’, since the number O can also appear as a literal
token, for example in the following case, also from the Wall Street Journal section of the

Penn Treebank:

(NP
(NP (DT a) (NN vote))
(PP (IN of)
(NP
(NP (CD 89))
(PP (TO to)
(NP (CD @))))))

At the very latest, once information unrelated to the syntax tree is to be added to
the corpus, such as temporal annotation, coreference resolution or named entity tags,
multiple annotation files will be needed. In fact, the OntoNotes corpus (Hovy et al. 2006),
which contains parts of the Penn Treebank extended with multiple additional layers, is

indeed serialized in multiple files for each document, expressing unrelated or only

12

loosely connected layers of annotation. A corpus containing unrelated layers in this
fashion is often referred to as a ‘multilayer’ corpus, and data models and technology for
such corpora are an active area of research (see Lideling et al. 2005, Burchardt et al.
2008, Zeldes 2017 and forthcoming).

Because of the complexity inherent in annotation graphs, complex tools are often
needed to annotate and represent multilayer data, and the choice of search and
visualization tools with corresponding support becomes more limited (see Tools and
Resources). In the case of formats for data representation, the situation is somewhat less
critical, since, as already noted, different types of information can be saved in separate
files. This also extends into the choice of annotation tools, as one can use separate tools,
for example to annotate syntax trees, typographical properties of source documents, or
discourse annotations. The greater challenge begins once these representations need to be
merged. This is often only possible if tools ensuring consistency across layers are
developed (e.g. the underlying text, and perhaps also tokenization must be kept consistent
across tools and formats).

As a merged representation for complex architectures, stand-off XML formats are
often used (see Section 4), and Application Programmatic Interfaces (APIs) are often
developed in tandem with such corpora to implement validation, merging and conversion
of separate representations of the same data (for example, the ANC Tool, used to convert
data in the American National Corpus and its richly annotated subcorpus, MASC, Ide et
al. 2010). For search and visualization of multilayer architectures, either a complex tool
can be used, such as ANNIS (Krause & Zeldes 2016, see Section 5.1), or a combination
of tools is used for each layer. For example in the TXM text mining platform, Heiden
(2010) proposes to use a web interface to query the Corpus Workbench (Christ 1994) for
‘flat’ annotations, TigerSearch (Lezius 2002) for syntax trees, and XQuery for
hierarchical XML. The advantage of this approach is that it can use off-the-shelf tools for
a variety of annotation types, and that it can potentially scale better for large corpora,
since each tool has only a limited share of the workload. The disadvantage is that a data
model merging results from all components can only be generated after query retrieval
has occurred in each component. This prevents complex searches across all annotation

layers: for example, it is impossible to find sentences with certain syntactic properties,

13

such as clefts, which also contain certain XML tags, such as entity annotations denoting
persons, and also have relational edges with components of other sentences, such as
coreference with a preceding or following entity annotation. These kinds of combinations
can be important for example for studying the interplay between syntax and semantics,

especially at the levels of discourse and pragmatics.

3. Case studies

3.1 The GUM corpus
The Georgetown University Multilayer corpus (GUM, Zeldes 2017), is a freely available

corpus of English Web genres, created using ‘class-sourcing’ as part of the Linguistics
curriculum at Georgetown University. The corpus, which is expanded every year and
currently contains over 64,000 tokens, is collected from four open access sources:
Wikinews news reports, Wikimedia interviews, wikiHow how-to guides and Wikivoyage
travel guides. Its architecture can therefore be considered to follow the common tree-style
macro-structure with four subcorpora, each containing simple, unaligned documents. The
complexity of the corpus architecture results from its annotations: as the data is collected,
student annotators iteratively apply a large number of annotation schemes to their data
using different formats and tools, including document structure in TEI XML, POS
tagging, syntactic parsing, entity and coreference annotations and discourse parses in
Rhetorical Structure Theory. The complete corpus covers over 50 annotation types (see

http://corpling.uis.georgetown.edu/gum/). A single tokenized word in GUM therefore

often carries an annotation graph of dozens of nodes and annotations, illustrated using

only two tokens from the corpus in Figure 4, which shows the two tokens I know.

14

http://corpling.uis.georgetown.edu/gum/

constituents _ - discourse
S
id=structure 158 ~
cal=5, \
A
relname= \
background 1
id=structure139 id=stru¢1ure1at‘ id=gicture 1050 !
cat=NP cat=VP nd=segment
i /
entities
- \ y
> ~ ~ ”
+ . ~ -
* o -
! id=sSpan111 1 -
" entity=person]
\ infstat=giv 'l
\ / speaker
S 7
h.____.-“"'
d=sSpan20
sp_who=gMichaelDranove
id=sSpan19 sentence
s_type=decl
id=sTok166 id=sTok167
claws5=PNP claws5=VVB

lemma=know

penn_pos=VBP
pos=VVP

tok_func=root

lemma=|
penn_pos=FRF

pos=PP
tok_func=nsubj

| know

S H | E—— E
(dependencies

Figure 4. Annotation graph for the tokens I know in an interview from GUM.

At an abstract level, the boxes in Figure 4 represent general graph nodes from the
set V. The two tokens in the shaded boxes towards the bottom of the image are somewhat
special nodes in that they carry both a variety of annotations (part of the set A) and
references to primary text data (I and know). Their annotations including three distinct
POS tags based on different tag sets, as well as the lemma and grammatical function
annotation. These token nodes also function as anchors for the remaining nodes in the
graph: every other node in the figure is attached directly or indirectly to the tokens via
edges. Layers are represented by distinct ovals; in this case, the tokens have not been
placed in any layer, but all other nodes and edges belong to exactly one layer. For

example, there is a dependency edge at the bottom of the figure connecting the two

15

tokens and carrying a label (func=nsubj, since | is the nominal subject of know),
belonging to a layer of ‘dependencies’. The single node in the layer ‘sentence’ above the
tokens is annotated as s_type=decl (declarative sentence), and is attached to both tokens,
but the edges attaching it are unannotated (no labels). Finally, some layers, such as the
constituent layer, contain a complex subgraph: an NP node is attached to the token I in
the ‘constituents’ layers, and a VP node is attached to know, and together they attach to
the S node denoting the clause. Similarly, the discourse layer, of which we only see one
incoming edge, is the entry point into the discourse annotation part of the graph, which
places multiple tokens in segments, and then constructs a sub-graph made of sentences
and clauses based on Rhetorical Structure Theory (RST, Mann & Thompson 1988). The
edge is annotated as ‘background’, indicating this clause gives background information
for some other clause.

Note that it is the corpus designer’s decision which elements are grouped in a
layer. For example, the constituent annotation S for the clause has a similar meaning to
the sentence annotation in the ‘sentence’ layer, but these have been modeled as separate.
As a result, it is at least technically possible for the corpus to have conflicting constituent
trees and sentence span borders. If these layers are generated by separate automatic or
manual annotation tools, then such conflicts are in fact likely to occur over the course of
the corpus. Similarly, a speaker annotation (‘sp_who’) is attached to both tokens, as is the
sentence annotation, but it is conceivable that these may conflict hierarchically: a single
sentence annotation may theoretically cover tokens belonging to different speakers,
which may or may not be desirable (e.g. for annotating one speaker completing another’s
sentence). This data models allows for completely independent annotation layers, united
only by joint reference to the same primary text.

3.2 The MERLIN Corpus
The MERLIN project (Multilingual Platform for European Reference Levels:

Interlanguage Exploration in Context, Boyd et al. 2014) makes three learner corpora
available in the target languages Czech, German and lItalian, which are richly annotated
and follow a comparable architecture to allow for cross-target language and native
language comparisons. The project was conceived to collect, study and make available

learner texts across the levels of the Common European Framework of Reference for

16

Languages (CEFR), which places language learners at levels ranging from Al (also
called ‘Breakthrough’, the most basic level) to C2 (‘Mastery’). Although these levels are
commonly used in language education and studies of second language acquisition,
learners often have little or no possibility to find texts coming from these levels. The
MERLIN corpora fill this gap by making texts at the A1-C1 levels publically available in
the three target languages above.

To see how the MERLIN corpora take advantage of their architecture in order to
expose learner data across levels we must first consider how users may want to access the
data, and what the nature of the underlying primary textual data is. On one level,
researchers, language instructors and other users would like to be able to search through
learner data directly: the base text is, trivially, whatever a learner may have written.
However, at the same time the problems discussed in Section 2.2 make searching through
non-native data, which potentially contains many errors,® non-trivial. For example, the
excerpt from one Italian text in (6) contains multiple errors where articles should be
combined with prepositions: once, da ‘from’ is used without an article in da mattina
‘from (the) morning’ for dalla ‘from the (feminine)’, and once, the form da is used
instead of dal ‘from the (masculine)’. The data comes from a Hungarian native speaker,

rated at an overall CEFR ranking of B2, as indicated by document metadata in the corpus.

(6) Da mattina al pomerrigio? Da prossima mese posso lavorare?
from morning to.the afternoon ? from next month can.1.sc work ?

‘From morning to the afternoon? From next month I can work?’

This data is invaluable to learners and educators interested in article errors. However
users interested in finding all usages of da in the L2 data will not be able to distinguish
correct cases of da from cases that should have dal or dalla. At the same time, less
obvious errors may render some word forms virtually unfindable. For example, the word

pomeriggio ‘afternoon’ is misspelled in this example, and should read pomerrigio (the ‘r’

® This is not to say that native data does not contain errors from a normative perspective, and indeed some
corpora, such as GUM in Section 3.1, do in fact annotate native data for errors.

17

should be double, the ‘g’ should not be). As a result, users who cannot guess the actual
spelling of words they are interested in will not be able to find such cases.

In order to address this, MERLIN includes layers of target hypotheses (TH, see
Reznicek et al. 2013). These provide corrected versions of the learner texts: At a
minimum, all subcorpora include a span annotation called TH1, which gives a minimally
grammatical version of the learner utterance, correcting only a much as necessary to
make the sentence error-free, but without improving style or correcting for meaning.’
Figure 5 shows the learner utterances on the ‘learner’ layer, while the TH1 layer shows
the minimal correction: preposition+article forms have been altered, and a word-order
error in the second utterance has been corrected (the sentence should begin Posso
lavorare ‘can I work’). The layer TH1Diff further notes where word form changes have
occurred (the value ‘CHA’), or where material has been moved, using ‘MOVS’ (moved,
source) and ‘MOVT’ (moved, target).8 These ‘difference tags’ allow users to find all
cases of discrepancies between the learner text and TH1 without specifying the exact

forms being searched for.

learner Da mattina | al | pomerrigio | ? Da prossima mese | posso | lavorare | ?
TH1 Dalla | maftina | al | pomeriggio | ? Posso | lavorare | dal prossimo mese ?
TH1Diff CHA CHA MOVT | MOVT CHA | CHA MOVS | MOVS
EA_category O_Graph G_Wo

EA_category G_Art ‘ G_Morphol_Wrong |

G_Art_type ¢} | Q ‘
G_Morphol_Wrong_type ‘ gend |

G_Wo_type | womainc|

O_Graph_graphgen_act_type o

O_Graph_graphgen_act_type ad

O_Graph_type graphgen

Figure 5. Annotation grid for a learner utterance, with target hypothesis (TH) and error
annotations, visualized using ANNIS (see Section 5.1).

One consequence of using a TH layer for the architecture of the corpus is that the

data may now in effect have two conflicting tokenizations: on the ‘learner’ layer, the first

" See Reznicek et al. (2012) for the closely related Falko corpus of L2 German, which developed minimal
TH annotation guidelines. Like Falko, a subset of MERLIN also includes an ‘extended” TH layer, called
TH2, on which semantics and style are also corrected. A closely related concept to TH construction which
is relevant to historical corpora is that of normalization: non-standard historical spellings can also be
normalized to different degrees, and similar questions about the desired level of normalization often arise.

® Further tags include ‘DEL’ for deleted material, and ‘INS’ for insertions.

18

“?” and the second ‘Da’ stand at adjacent token positions; on the TH1 layer, they do not.
To make it possible to find ‘?” followed by ‘Da’ in this instance, while ignoring or
including TH layer gaps, MERLIN’s architecture explicitly flags these annotation layers
as ‘segmentations’, allowing a search engine to use either one for the purpose of
determining adjacency as well as context display size (i.e. what to show when users
request a windows of +/- 5 units).

One shortcoming of TH annotations is that they cannot generalize over common
error types which are of interest to users: for example, they do not directly encode a
concept of ‘article errors’. To remedy this, MERLIN includes a wide range of error
annotations, with a major error-annotation category layer (EA_category, e.g.
G_Morphol_Wrong for morphological errors), and more fine grained layers, such as
G_Morphol_Wrong_type. The latter indicates a ‘gender’ error on prossima ‘next
(feminine)’ in Figure 5, which should read prossimo ‘next (masculine)’ to agree with
mese ‘month’. Note however that the architecture allows multiple conflicting annotations
at the same position: two ‘EA_category’ annotations overlap under prossima, indicating
the presence of two concurrent errors, and there is no real indication, except for the
length of the span, that the ‘gender’ error is somehow paired with the shorter
EA_category annotation. Additionally, the EA layers cannot encode all foreseeable errors
of interest: for example, there is no specific category for cases where da should be dal
(but not dalla). This type of query can only be addressed using the running TH layer.’

Finally it should be noted that both tokens and annotations, including TH layers,
can be used as entry points for more complex annotation graphs. In the case of MERLIN,
an automatically generated dependency syntax parse layer was added on top of learner

layer, as shown in Figure 6.

® A more minimal type of TH analysis is also possible, in which only erroneous tokens are given a
correction annotation (see e.g. Tenfjord et al. 2006 for a solution using TEI XML). A limitation of this
approach is that the TH layer itself cannot be annotated as a complete independent text (e.g. to compare
POS tag distributions in the original and TH text), and that gaps of the type seen in Figure 5 cannot be
represented.

19

Da mattina al pomerrigio ? - Da prossima mese posso lavorare 7

Figure 6. Dependency parse attached to the annotations of example (6) in MERLIN.

If the corpus architecture has successfully expressed all annotations including the parse in
a single graph, then it is possible to query syntax trees in conjunction with other layers.
For example we can obtain syntactic information, such as the most common grammatical
functions and distance between words associated with movements (MOVS/MOVT)
across gaps on the TH layer. This would not be possible if TH analysis had been
implemented in separate files, without consideration for the alignment of each
annotation’s structures or the handling of gaps and segmentation conflicts. Similar
additional graphs would also be conceivable, for example to link specific MOVS and
MOVT locations, but these have not yet been implemented — TH1Diffs are currently
expressed as flat annotations whose interconnections are left unexpressed in the data

model.

4. Critical assessment and future directions
At the time of writing, corpus practitioners are in the happy position of having a wide

range of choices for concrete corpus representation formats and tools. However, few tools
or formats can do ‘everything’, and more often than not, the closer they get to this ideal,
the less convenient or optimized they are for any one task. To recap some important
considerations in choosing a corpus architecture and a corresponding concrete

representation format:

- Is preservation of the exact underlying text (e.g. whitespace preservation)
important?
- Are annotations very numerous or involve conflicting spans to the extent that a

stand-off format is needed?

20

- Are annotations arranged in mutually exclusive spans? Are they hierarchically
nested? Are discontinuous annotations required?

- Are complex metadata management and subcorpus structure needed, or can this
information be saved separately in a simple table?

- Does the data contain A/V signals? If so, are there overlapping speakers in
dialogue?

- Is parallel alignment needed, i.e. a parallel corpus?

These questions are important to address, but the answers are not always straightforward.
For example, one can represent ‘discontinuous’ annotations slightly less faithfully by
making two annotations with some co-indexed naming mechanism (cf. MOVS and
MOVT in Section 3.2). This may be unfaithful to our envisioned data model, but will
greatly broaden the range of tools that can be used.

In practice, a large part of the choice of corpus architecture is often dictated by the
annotation tools that researchers wish to use, and the properties of their representation
formats. Using a more convenient tool and compromising the data model can be the right
decision if this compromise does not hurt our ability to approach our research questions
or applications. For example, many spoken corpora containing dialogue do not model
speaker overlap, instead opting to place overlapping utterances in the order in which they
begin. This can be fine for some research questions, for example for a study on word
formation in spoken language; but not for others, e.g. for pragmatic studies of speech act
interactions in dialogue. Table 1 gives a (non-exhaustive) overview of some popular
corpus formats and their coverage in terms of the properties discussed above. A good
starting point when looking to choose a format is to use this table or construct a similar
one, note supported and unsupported features, and rule out formats that are not capable of

representing the desired architectural properties.

whitespace
standoff
hierarchy

confl. spans
discontinuous
parallel

dialogue overlap
metadata
subcorpora
multimodal

CoNLLU yes no dep no no no no no no no
CwB no no no yes no yeS no yes no no
Elan yes inline no yesS no NO yeS YyeS yes Ves
EXMARaLDA |yes inline no yesS Nno NO yeS YyeS yes Ves
FoLiA yes inline yes yes yes no no yes yes no
GrAF yes yes vyes yes yes no™ no' yes yes no
PAULA XML |yes yes yes yes yes yes yes yes yes Yyes
PTB no no yes no no no no no no no
TCF yes inline yes yes yes no no yes no no
TEI XML yes yes’? yes no* no” yes yes yes yes yes
TigerXML no no yes no vyes no® no yes® yes no
tiger2 yes yes yes yes yeS no no yes yes no
WebAnno yes inline dep® yes no no no no no no

Table 1. Data model properties for a range of open corpus formats.

CoNLLU is a popular format in the family of tab-delimited CoNLL formats,
which is used for dependency treebanks in the Universal Dependencies project

(http://universaldependencies.org/). It is enriched with ‘super-token’-like word forms (i.e.

multi-token orthographic word forms such as ‘I’'m’), open-ended key-value pairs on
tokens, and sentence level annotations as key-value pairs. The CWB vertical format
(sometimes also called ‘TreeTagger format’, due to its compatibility with the tagger by
Schmid 1994), is an SGML format with one token per line, accompanied by tab-
delimited token annotations, and potentially conflicting, but not hierarchically nested
element spans. Elan and EXMARaLDA are two popular grid-based annotation tools,
which do not necessarily model a token concept, instead opting for unrestricted layers of
spans, some of which can be used to transcribe texts, while others express annotations.

They offer excellent support of aligned A/V data and model a concept of potentially

1% The value ‘dep’ indicates formats with some capacity to express dependency edges between flat units
(including, e.g. syntactic dependency or coreference annotation), but without complex node hierarchies.

I While GrAF does not explicitly support multiple overlapping speakers or parallel corpora, there are some
conceivable ways of representing these using the available graph structure. However | am not aware of any
corpus or tool implementing these with GrAF.

12 Stand-off annotation has been implemented in TEI XML (see Chapter 20.5 of the TEI p5 guidelines,
http://www.tei-c.org/) and can cover a wide range of use cases for discontinuous annotations and hierarchy
conflicts. However it is not frequently used in the TElI community, and there are some limitations (see
Banski 2010 for analysis).

3 TigerXML itself does not implement parallel alignment, but an extension format known as STAX has
been developed for parallel treebanking in the Stockhold TreeAligner (Lundborg et al. 2007). Metadata in
TigerXML is limited to a predetermined set of fields, such as ‘author’, ‘date’ and ‘description’.

22

http://universaldependencies.org/
http://www.tei-c.org/

multiple speakers, complete with speaker-related metadata, which makes them ideal for
dialogue annotation. FoLiA, GrAF and PAULA XML are all forms of graph-based stand-
off XML formats, though FoLiA’s implementation is actually contained in a single XML
file, with document internal references. GrAF has the status of an ISO standard (ISO
24612), and has been wused to represent the American National Corpus
(https://www.anc.org/). FoLiA has the advantage of offering a complete annotation
environment (FLAT, http://flat.science.ru.nl/), though PAULA and GrAF can be edited

using multi-format annotation tools such as Atomic (http://corpus-tools.org/atomic/).

PAULA is the only format of the three which implements support for parallel corpora and
overlapping speakers.

Penn Treebank bracketing (PTB), TigerXML and tiger2 are formats specializing
in syntax annotation (treebanks). The PTB format is the most popular way of representing
projective constituent trees (no crossing edges) with single node annotations (part of
speech or syntactic category). It is highly efficient and readable, but has some limitations
(see the ‘crocidolite’ example above). TigerXML is a more expressive XML format,
capable of representing multiple node annotations, crossing edges, edge labels and two
distinct types of edges. The tiger2 format (Romary et al. 2015) is an extension of
TigerXML, outwardly very similar in syntax, but with unlimited edge typing, metadata,
multiple/conflicting graphs per sentence and other more ‘graph-like’ features. It enjoys an
ISO standard status (1SO 24615).

TCF (Hinrichs et al. 2010) is an exchange format used by CLARIN infrastructure,
and in particular the WebLicht NLP toolchain. It is highly expressive for a closed set of
multilayer annotations, and has built in concepts for tokenization, sentence segmentation,
syntax and entity annotation. It is also one of the supported formats of the popular
WebAnno online annotation tool (Yimam et al. 2013), which also supports a variety of
formats of its own, including its highly expressive UIMA based format (serializable as an
‘inline stand-off> XMI format), and a whitespace preserving tab-delimited export, called
WebAnno TSV.

An important trend in corpus building tools looking forward is a move away from
saving and exchanging data in local files on annotators’ computers or private servers.

Corpora are increasingly built using public, version-controlled repositories on platforms

23

https://www.anc.org/
http://flat.science.ru.nl/
http://corpus-tools.org/atomic/

such as GitHub. For example, the Universal Dependencies project is managed entirely on
GitHub, including publically available data in multiple languages and the use of GitHub
pages and issue trackers for annotation guidelines and discussion. Some tools (e.g. the
online XML and spreadsheet editor GitDox, Zhang & Zeldes 2017) are opting for online
storage on GitHub and similar platforms as their exclusive file repository. In the future
we will hopefully see increasing openness and interoperability between tools which adopt
open data models and best practices that allow users to benefit from and re-use existing
data and software.

5. Resources

5.1 Tools
An important set of tools influencing the choice of corpus architecture is NLP pipelines

and APIs, which allow users to construct automatically tagged and parsed representations
with complex data models (and these can be manually corrected if needed). Some
examples include Stanford CoreNLP (Manning et al. 2014), Apache OpenNLP
(https://opennlp.apache.org/), Spacy (https://spacy.io/), the Natural Language Toolkit
(NLTK, http://www.nltk.org/), GATE (Cunningham et al. 1997), DKPro (Eckart de
Castilno & Gurevyich 2014), NLP4J (https://emorynlp.qgithub.io/nlp4j/) and FreeLing
(http://nlp.cs.upc.edu/freeling/).

The output formats of NLP tools is often not compatible with corpus search
architectures, and may not be readily human-readable (for example, .json files offer very
efficient storage, but are only meant to be machine readable). For this reason, NLP tool
output must often be converted into corpus formats such as those in Table 1. Versatile
conversion tools, such as Pepper (http://corpus-tools.org/pepper/), can be used to convert

between a variety of formats and make data accessible to a wider range of tools. Another
important feature supported by tools such as Pepper is merging data from several formats
into a format capable of expressing the multiple streams of input data. Using a merging
paradigm makes it possible to build corpora that require some advanced features (e.g.
conflicting spans, or multimodal time alignment), which are not available simultaneously
in the tools we wish to use, but can be represented separately in a range of tools, only to
be merged later on. For example, the GUM corpus described above is annotated using
five different tools which are optimized to specific tasks, and the merged representation is

24

https://opennlp.apache.org/
https://spacy.io/
http://www.nltk.org/
https://emorynlp.github.io/nlp4j/
http://nlp.cs.upc.edu/freeling/
http://corpus-tools.org/pepper/

created automatically (this is sometimes called a ‘build bot’ strategy; for an example see

https://corpling.uis.georgetown.edu/gum/build.html).

Finally, corpus architecture considerations also interact with the choice of search
and visualization facilities that one intends to use. Having an annotation tool which
supports a complex data model may be of little use if the annotated data cannot be
accessed and used in sensible ways later on. Some corpus practitioners use scripts, often
in Python or R, to evaluate their data, without using a dedicated search engine (see
Chapter 9, Programming for Corpus Linguistics). While this approach is very
versatile, it is also labor intensive: for each new type of information, a new script must be
written which traverses the corpus in search of some information. It is therefore often
desirable to have a search engine that is capable of extracting data based on a simple
query. For corpora that are meant to be publically available to non-expert users, this is a
necessity. In public projects, a proprietary search engine tailored explicitly for a specific
corpus is often programmed, which cannot easily be used for other corpora. Here |
therefore focus on generic, freely available tools which can be used for a variety of
datasets.

The Corpus Workbench (Christ 1994) and its web interface CQPWeb (Hardie
2012) are amongst the most popular tools for corpus search and visualization, but are not
capable of representing hierarchical data, and therefore they cannot be used for treebanks.
Grid-like data, e.g. from EXMARaLDA or Elan files, can be indexed for search using
EXMARaLDA’s search engine, EXAKT (http://fexmaralda.org/en/exakt-en/). For

treebanks, there are some local user tools (e.g. TigerSearch, Lezius 2002, or command

line tools such as TGrep2, http://tedlab.mit.edu/~dr/Tgrep2/, the successor of the original

Penn Treebank tool, or Stanford’s Tregex, https://nlp.stanford.edu/software/tregex.shtml).

There are only a few dedicated web interfaces for treebanks, notably Ghodke & Bird’s
(2012) highly efficient Fangorn (for projective, unlabeled constituent trees), and
TUNDRA, the Tibingen aNnotated Data Retrieval Application, for TigerXML style trees
and dependency trees (Martens 2013). For small-medium sized multilayer corpora, with
syntax trees, entity and coreference annotation, discourse parses and more, ANNIS

(http://corpus-tools.org/annis/) offers a comprehensive solution supporting highly

complex graph queries over hierarchies, conflicting spans, aligned A/V data and parallel

25

https://corpling.uis.georgetown.edu/gum/
http://exmaralda.org/en/exakt-en/
http://tedlab.mit.edu/~dr/Tgrep2/
https://nlp.stanford.edu/software/tregex.shtml
http://corpus-tools.org/annis/

corpora. For larger datasets, KorAP (Diewald et al. 2016) presents a search engine
supporting a substantial subset of graph relations, accelerated for text search using

Apache Lucene.

5.2 Further reading
For readers with some corpus building experience, Kiibler & Zinsmeister (2015) gives a

comprehensive overview of many aspects of complex annotated corpora, including data
models and corpus query languages for treebanks and multilayer corpora. McEnery et al.
(2006) is a good hands-on introduction for readers with less background, and presents
and discusses both central readings on corpus design and practical case studies with a
variety of corpora, including multilingual data and alignment. Weisser (2016) is also a
practical guide for beginners, focusing on flat-annotated corpora, as well as working with
some more complex data, such as the British National Corpus (BNC,
http://www.natcorp.ox.ac.uk/). More information on specific topics in corpus architecture
can also be found in selected chapters from Lideling & Kyto (2008-2009).

References

Banski, Piotr (2010). “Why TEI Stand-off Annotation Doesn't Quite Work and Why You
Might Want to Use it Nevertheless’, in Proceedings of Balisage: The Markup
Conference 2010. Montréal.

Biber, Douglas (1993). ‘Representativeness in Corpus Design’, Literary and Linguistic
Computing 8(4): 243-257.

Boyd, Adriane, Hana, Jirka, Nicolas, Lionel, Meurers, Detmar, Wisniewski, Katrin, Abel,
Andrea, Schone, Karin, Stindlova, Barbora, and Vettori, Chiara (2014). The MERLIN
Corpus: Learner Language and the CEFR. In: Proceedings of LREC 2014. Reykjavik,
Iceland, 1281-1288.

Brugman, Hennie, and Russel, Albert (2004). ‘Annotating Multimedia/Multi-modal
resources with ELAN’, in Proceedings of LREC 2004. Paris: ELRA, 2065-2068.

Burchardt, Aljoscha, Padd, Sebastian, Spohr, Dennis, Frank, Anette, and Heid, Ulrich
(2008). ‘Formalising Multi-layer Corpora in OWL DL - Lexicon Modelling,
Querying and Consistency Control’, in Proceedings of IJCNLP 2008. Hyderabad,
India, 389-396.

Calzolari, Nicoletta, and McNaught, John (1994). EAGLES Interim Report EAG--EB--IR-
-2.

Canales, Omar, Monaco, Vinnie, Murphy, Thomas, Zych, Edyta, Stewart, John, Castro,
Charles Tappert Alex, Sotoye, Ola, Torres, Linda, and Truley, Greg (2011). ‘A
Stylometry System for Authenticating Students Taking Online Tests’, in Proceedings

26

http://www.natcorp.ox.ac.uk/

of Student-Faculty Research Day, CSIS, Pace University, May 6th, 2011. White
Plains NY, B4.1-B4.6.

Castilho, Richard Eckart de, and Gurevych, Iryna (2014). ‘A Broad-Coverage Collection
of Portable NLP Components for Building Shareable Analysis Pipelines’, in
Proceedings of the Workshop on Open Infrastructures and Analysis Frameworks for
HLT. Dublin, 1-11.

Castilho, Richard Eckart de, Ide, Nancy, Lapponi, Emanuele, Oepen, Stephan, Suderman,
Keith, Velldal, Erik, and Verhagen, Marc (2017). ‘Representation and Interchange of
Linguistic Annotation: An In-Depth, Side-by-Side Comparison of Three Designs’, in
Proceedings of the 11th Linguistic Annotation Workshop (LAW XI). Valencia, Spain,
67-75.

Christ, Oliver (1994). ‘A Modular and Flexible Architecture for an Integrated Corpus
Query System’, in Proceedings of Complex 94. 3rd Conference on Computational
Lexicography and Text Research. Budapest, 23-32.

Crasborn, Onno, and Sloetjes, Han (2008). ‘Enhanced ELAN Functionality for Sign
Language Corpora’, in Proceedings of the 3rd Workshop on the Representation and
Processing of Sign Languages at LREC 2008. Marrakesh, Morocco, 39-42.

Cunningham, Hamish, Humphreys, Kevin, Gaizauskas, Robert, and Wilks, Yorick
(1997). ‘Software Infrastructure for Natural Language Processing’, in Proceedings of
the Fifth Conference on Applied Natural Language Processing. Washington, DC,
237-244.

Diewald, Nils, Hanl, Michael, Margaretha, Eliza, Bingel, Joachim, Kupietz, Marc,
Banski, Piotr, and Witt, Andreas (2016). ‘KorAP Architecture - Diving in the Deep
Sea of Corpus Data’, in Proceedings of LREC 2016. Portoroz: ELRA.

Dipper, Stefanie (2005). ‘XML-based Stand-off Representation and Exploitation of
Multi-Level Linguistic Annotation’, in Proceedings of Berliner XML Tage 2005.
Berlin, Germany, 39-50.

Garside, Roder, Leech, Geoffrey, and Sampson, Geoffrey (eds.) (1987). The
Computational Analysis of English: A Corpus-based Approach. London: Longman.
Ghodke, Sumukh, and Bird, Steven (2010). ‘Fast Query for Large Treebanks’, in

Proceedings of NAACL 2010. Los Angeles, CA, 267-275.

Green, Lisa J. (2002). African American English: A Linguistic Introduction. Cambridge:
Cambridge University Press.

Greenbaum, Sidney (ed.) (1996). Comparing English Worldwide: The International
Corpus of English. Oxford: Clarendon Press.

Hardie, Andrew (2012). ‘CQPweb - Combining Power, Flexibility and Usability in a
Corpus Analysis Tool’, International Journal of Corpus Linguistics 17(3): 380—4009.

Hearst, Marti A. (1997). ‘TextTiling: Segmenting Text into Multi-paragraph Subtopic
Passages’, Computational Linguistics 23(1): 33-64.

27

Heiden, Serge (2010). ‘The TXM Platform: Building Open-Source Textual Analysis
Software Compatible with the TEI Encoding Scheme’, in 24th Pacific Asia
Conference on Language, Information and Computation. Sendai, Japan, 389-398.

Hinrichs, Erhard W., Hinrichs, Marie, and Zastrow, Thomas (2010). ‘WebLicht: Web-
Based LRT Services for German’, in Proceedings of the ACL 2010 System
Demonstrations. Uppsala, 25-29.

Hoder, Steffen (2012). ‘Annotating Ambiguity: Insights from a Corpus-Based Study on
Syntactic Change in Old Swedish’, in T. Schmidt, and K. Woérner (eds.), Multilingual
Corpora and Multilingual Corpus Analysis. (Hamburg studies on multilingualism
14.) Amsterdam and Philadelphia: Benjamins, 245-271.

Hovy, Eduard, Marcus, Mitchell, Palmer, Martha, Ramshaw, Lance, and Weischedel,
Ralph (2006). ‘OntoNotes: The 90% Solution’, in Proceedings of the Human
Language Technology Conference of the NAACL, Companion Volume: Short Papers.
New York, 57-60.

ISO 24615 (2010). Language Resource Management — Syntactic Annotation Framework
(SynAF).

ISO 24612 (2012). Language Resource Management — Linguistic Annotation Framework
(LAF).

Ide, Nancy, Baker, Collin, Fellbaum, Christiane, and Passonneau, Rebecca (2010). ‘The
Manually Annotated Sub-Corpus: A Community Resource for and by the People’, in
Proceedings of ACL 2010. Uppsala, Sweden, 68—73.

Ide, Nancy, and Suderman, Keith (2007). ‘GrAF: A Graph-based Format for Linguistic
Annotations’, in Proceedings of the Linguistic Annotation Workshop 2007. Prague,
1-8.

Klein, Thomas, and Dipper, Stefanie (2016). Handbuch zum Referenzkorpus
Mittelhochdeutsch. (Bochumer Linguistische Arbeitsberichte 19.) Bochum:
Universitat Bochum Sprachwissenschaftliches Institut.

Kountz, Manuel, Heid, Ulrich, and Eckart, Kerstin (2008). ‘A LAF/GrAF-based
Encoding Scheme for Underspecified Representations of Dependency Structures’, in
Proceedings of LREC 2008. Marrakesh, Morocco.

Krause, Thomas, Lideling, Anke, Odebrecht, Carolin, and Zeldes, Amir (2012).
‘Multiple Tokenizations in a Diachronic Corpus’, in Exploring Ancient Languages
through Corpora. Oslo.

Krause, Thomas, and Zeldes, Amir (2016). ‘ANNIS3: A New Architecture for Generic
Corpus Query and Visualization’, Digital Scholarship in the Humanities 31(1): 118-
139.

Kredens, Krzysztof, and Coulthard, Malcolm (2012). ‘Corpus Linguistics in Authorship
Identification’, in P. M. Tiersma, and L. M. Solan (eds.), The Oxford Handbook of
Language and Law. Oxford: Oxford University Press, 504-516.

28

Kibler, Sandra, and Zinsmeister, Heike (2015). Corpus Linguistics and Linguistically
Annotated Corpora. London: Bloomsbury.

Kucera, Henry, and Francis, W. Nelson (1967). Computational Analysis of Present-day
English. Providence: Brown University Press.

Kupietz, Marc, Belica, Cyril, Keibel Holger, and Witt, Andreas (2010). The German
Reference Corpus DEREKO: A Primordial Sample for Linguistic Research. In:
Proceedings of LREC 2010. Valletta, Malta, 1848-1854.

Lee, John, Yeung, Chak Yan, Zeldes, Amir, Reznicek, Marc, Ludeling, Anke, and
Webster, Jonathan (2015). ‘CityU Corpus of Essay Drafts of English Language
Learners: A Corpus of Textual Revision in Second Language Writing’, Language
Resources and Evaluation 49(3): 659-683.

Leech, Geoffrey N. (1997). ‘Introducing Corpus Annotation’, in R. Garside, G. N. Leech,
and T. McEnery (eds.), Corpus Annotation: Linguistic Information from Computer
Text Corpora. London and New York: Routledge, 1-18.

Lezius, Wolfgang (2002). Ein Suchwerkzeug fir syntaktisch annotierte Textkorpora. PhD
Thesis, Institut fir maschinelle Sprachverarbeitung Stuttgart.

Lideling, Anke, and Kytd, Merja (eds.) (2008-2009). Corpus Linguistics. An
International Handbook. (Handbooks of Linguistics and Communication Science 29.)
Berlin and New York: Mouton de Gruyter.

Lideling, Anke, Walter, Maik, Kroymann, Emil, and Adolphs, Peter (2005). ‘Multi-level
Error Annotation in Learner Corpora’, in Proceedings of Corpus Linguistics 2005.
Birmingham, UK.

Lundborg, Joakim, Marek, Torsten, Mettler, Maél, and Volk, Martin (2007). ‘Using the
Stockholm TreeAligner’, in Proceedings of the Sixth Workshop on Treebanks and
Linguistic Theories. Bergen.

Mann, William C., and Thompson, Sandra A. (1988). ‘Rhetorical Structure Theory:
Toward a Functional Theory of Text Organization’, Text 8(3): 243-281.

Manning, Christopher D., Surdeanu, Mihai, Bauer, John, Finkel, Jenny, Bethard, Steven
J., and McClosky, Davide (2014). ‘The Stanford CoreNLP Natural Language
Processing Toolkit’, in Proceedings of ACL 2014: System Demonstrations. Baltimore,
MD, 55-60.

Marcus, Mitchell P., Santorini, Beatrice, and Marcinkiewicz, Mary Ann (1993).
‘Building a Large Annotated Corpus of English: The Penn Treebank’, Special Issue
on Using Large Corpora, Computational Linguistics 19(2): 313-330.

Martens, Scott (2013). ‘Tundra: A Web Application for Treebank Search and
Visualization’, in Proceedings of the Twelfth Workshop on Treebanks and Linguistic
Theories (TLT12). Sofia, 133-144.

McEnery, Tony, Xiao, Richard, and Tono, Yukio (2006). Corpus-Based Language
Studies: An Advanced Resource Book. (Routledge Applied Linguistics.) London and
New York: Routledge.

29

Nivre, Joakim (2008). ‘Treebanks’, in A. Liideling, and M. Kyt6 (eds.), Corpus
Linguistics. An International Handbook. Vol. 1. Berlin: Mouton de Gruyter, 225-241.

Odebrecht, Carolin, Belz, Malte, Zeldes, Amir, and Lideling, Anke (2016). ‘RIDGES
Herbology - Designing a Diachronic Multi-Layer Corpus’, Language Resources and
Evaluation.

Reznicek, Marc, Ludeling, Anke, Krummes, Cedric, Schwantuschke, Franziska, Walter,
Maik, Schmidt, Karin, Hirschmann, Hagen, and Andreas, Torsten (2012). Das Falko-
Handbuch. Korpusaufbau und Annotationen. Humboldt-Universitdt zu Berlin,
Technical Report, Version 2.01, Berlin.

Reznicek, Marc, Liideling, Anke, and Hirschmann, Hagen (2013). ‘Competing Target
Hypotheses in the Falko Corpus: A Flexible Multi-Layer Corpus Architecture’, in A.
Diaz-Negrillo, N. Ballier, and P. Thompson (eds.), Automatic Treatment and Analysis
of Learner Corpus Data. Amsterdam: John Benjamins, 101-124.

Romary, Laurent, and Bonhomme, Patrice (2000). ‘Parallel Alignment of Structured
Documents’, in J. Véronis (ed.), Parallel Text Processing: Alignment and Use of
Translation Corpora. Dordrecht: Kluwer, 201-217.

Romary, Laurent, Zeldes, Amir, and Zipser, Florian (2015). ‘<tiger2/> — Serialising the
ISO SynAF Syntactic Object Model’, Language Resources and Evaluation 49(1): 1-
18.

Santorini, Beatrice (1990). Part-of-Speech Tagging Guidelines for the Penn Treebank
Project (3rd Revision). Technical Report, University of Pennsylvania.

Sauer, Simon, and Liideling, Anke (2016). ‘Flexible Multi-Layer Spoken Dialogue
Corpora’, International Journal of Corpus Linguistics, Special Issue on Spoken
Corpora 21(3): 419-438.

Schembri, Adam, Fenlon, Jordan, Rentelis, Ramas, Reynolds, Sally, and Cormier, Kearsy
(2013). ‘Building the British Sign Language Corpus’, Language Documentation and
Conservation 7: 136-154.

Schmid, Helmut (1994). ‘Probabilistic Part-of-Speech Tagging Using Decision Trees’, in
Proceedings of the Conference on New Methods in Language Processing.
Manchester, UK, 44-49.

Schmid, Helmut (2008). ‘Tokenizing and Part-0f-Speech Tagging’, in A. Liideling, and
M. Kyt0 (eds.), Corpus Linguistics. An International Handbook. Vol. 1. Berlin:
Mouton de Gruyter, 527-551.

Schmidt, Thomas, and Worner, Kai (2009). ‘EXMARaLDA — Creating, Analysing and
Sharing Spoken Language Corpora for Pragmatic Research’, Pragmatics 19(4): 565—
582.

Smith, Jason R., Quirk, Chris, and Toutanova, Kristina (2010). ‘Extracting Parallel
Sentences from Comparable Corpora using Document Level Alignment’, in
Proceedings of NAACL 2010. Los Angeles, 403—411.

30

Tenfjord, Kari, Meurer, Paul, and Hofland, Knut (2006). The ASK Corpus - A Language
Learner Corpus of Norwegian as a Second Language. In: Proceedings of LREC 2006.
Genoa, Italy, 1821-1824.

Weisser, Martin (2016). Practical Corpus Linguistics: An Introduction to Corpus-Based
Language Analysis. Oxford: Wiley Blackwell.

Wichmann, Anne (2008). Speech Corpora and Spoken Corpora. In: Anke Lideling &
Merja Kyt (eds.), Corpus Linguistics. An International Handbook. Vol. 1. Berlin:
Mouton de Gruyter, 187—-207.

Yimam, Seid Muhie, Gurevych, Iryna, Castilho, Richard Eckart de, and Biemann, Chris
(2013). ‘WebAnno: A Flexible, Web-based and Visually Supported System for
Distributed Annotations’, in Proceedings of ACL 2013. Sofia, Bulgaria, 1-6.

Zeldes, Amir (2017). ‘The GUM Corpus: Creating Multilayer Resources in the
Classroom’, Language Resources and Evaluation 51(3), 581-612.

Zeldes, Amir (forthcoming). Multilayer Corpus Studies. (Routledge Advances in Corpus
Linguistics.) London: Routledge.

Zhang, Shuo & Amir Zeldes (2017). GitDOX: A Linked Version Controlled Online XML
Editor for Manuscript Transcription. In: Proceedings of FLAIRS-30. Marco Island,
FL, 619-623.

Zipser, Florian, and Romary, Laurent (2010). ‘A Model Oriented Approach to the
Mapping of Annotation Formats using Standards’, in Proceedings of the Workshop on
Language Resource and Language Technology Standards, LREC-2010. Valletta,
Malta, 7-18.

31

