
1 

 

Corpus Architecture
*
 

1. Introduction 

The architecture chosen for a certain corpus refers to the conceptual division of different 

types of objects contained in a corpus, such as texts, annotations and metadata, and the 

data model containing these objects, e.g. using trees or graphs to connect (parts of) words 

or documents, and the types of analyses one can apply to each object. This chapter 

presents some of the key characteristics distinguishing different corpus architectures. The 

focus is on abstract data models and the ways in which they are realized in concrete 

formats for corpus representation, as well as consequences for the usability of the 

resulting corpora.  

The overview of fundamental notions in Section 2 is divided into three major 

sections and begins with an analysis of issues in corpus macro structure, such as dividing 

corpora into subcorpora, attaching metadata and alignment in parallel corpora. The 

discussion then moves on to detailed issues of document structure, looking at different 

types of primary data, such as textual data, transcribed dialogue with or without multiple 

overlapping speakers, and multimodal data. Although spoken language is considered 

‘primary’ in many senses, corpus architectures usually treat aligned audio/video 

information (A/V for short) as a type of annotation, and this can have consequences for 

corpus architecture. As we will explore below, notions such as adjacent tokens, 

overlapping data, and multiple or conflicting tokenization can arise which have complex 

effects (see Sauer & Lüdeling 2016). The third subsection completes the overview by 

discussing architectures for simple textual annotations and more complex annotation 

graphs (roughly, webs of interconnected analyses), and the ways in which they are 

encoded. The choice of architecture determines how much information can be expressed, 

from simple token annotations, such as part of speech (POS) tags, to complex multilayer 

corpora with conflicting hierarchies encoding syntax, semantics and more in dozens of 

annotation layers. 

Section 3 presents two practical case studies using existing corpora. The first, 

examining the GUM corpus (Georgetown University Multilayer corpus, Zeldes 2017), 
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illustrates aspects of annotation graph modeling, such as positional and structural 

attributes, span annotations versus hierarchical trees (e.g. syntax trees), and graphs 

involving pointing relations (for example coreference annotation or discourse relations). 

These annotation graphs coalesce to form a merged multilayer corpus containing as many 

as 50 different annotation types applied to each sentence in the corpus. The second study 

focuses on encoding analyses of non-native language in a learner corpus. Using the 

MERLIN corpora (Boyd et al. 2014), we discuss using original learner texts and 

alternative corrected texts, known as target hypotheses, in tandem with error annotations. 

This creates challenges for the definitions of tokens and other types of word 

segmentations, with implications for using complex data models with non-standard 

language. 

Section 4 critically outlines some specific formats and methods used by Natural 

Language Processing (NLP) and manual annotation tools, and compares popular 

standards in terms of their expressive power, strengths and shortcomings. For building 

complex corpora, especially in the multilayer annotation graph paradigm, a key tension is 

discussed between concurrently maintaining multiple, comparatively simple formats for 

different annotation types, and stand-off XML formats representing ‘everything at once’. 

Section 5 concludes with pointers to useful resources and suggestions for further reading. 

2. Fundamentals 

2.1 Corpus macro-structure 

If a corpus is “a collection of pieces of language that are selected and ordered according 

to explicit linguistic criteria in order to be used as a sample of the language”,
1
 then the 

first component of corpus architecture, before considering analyses within each ‘piece’, is 

the organization of the collection of ‘pieces of language’. A minimal corpus macro-

structure is therefore a single or ‘top-level’ corpus object, directly containing the ‘pieces’, 

which can be referred to as ‘documents’, as shown on the left in Figure 1. Documents are 

not necessarily complete texts: for example, they can be samples of n tokens (see Biber 

1993 on sample size selection), a situation that can arise due to copyright restrictions 

forbidding full publication of the source text, or due to resource limitations when only a 

                                                 
1
 Definition from EAGLES, the Expert Advisory Group on Language Engineering Standards; see Calzolari 

& McNaught (1994), and McEnery et al. (2006:4-5) for discussion. 
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subpart of a longer text can be feasibly annotated in a given project. Documents usually 

correspond to contiguous text taken from some source, with few exceptions.
2
 In many 

corpus search architectures (see Section 4), the definition of the document plays an 

important role in determining the boundaries of the search space for queries: often, if 

users want to search for certain words ‘within 10 words’, they intend for the result to 

come from one document, and would not want to see a search result containing the last 

word of one text followed by a word from the beginning of an unrelated text. Although 

this issue is often overlooked, the definition of the document can thus affect search 

results. For example, in a corpus of the works of Charles Dickens, what are the 

boundaries of a document? A single book? Or each chapter within each book? While 

each definition may seem reasonable, they are not identical. 

 Very often, corpora are constructed according to design criteria which assign 

documents to different categories (see the chapter on Corpus Compilation). In these 

cases, the most common corpus macro-structure is the one in the middle of Figure 1: a 

tree of subcorpora, each containing documents. Subcorpora can be arranged 

hierarchically, for example a corpus can have written and spoken subcorpora (e.g. 

corpora in the International Corpus of English, ICE, Greenbaum 1996) and the latter 

subcorpus may further contain conversation and broadcast news subcorpora, before 

reaching actual documents. In more complex designs, shown on the right of Figure 1, 

criteria cross-classify across documents, meaning that documents belong to several 

categories at once. This is often achieved by labeling documents with metadata 

categories, with the intention of creating dynamic or virtual subcorpora. For example, 

metadata may be used to classify spoken data as a conversation or monologue, and at the 

same time as private or public speech. It is then possible to dynamically construct a 

subcorpus containing all private spoken data, or all monologue data, etc.  

 

                                                 
2
 One example could be in the case of historical corpora of fragmentary texts, in which a document 

corresponds to everything we have from a certain work which was originally a contiguous text.  
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Figure 1. A minimal, flat corpus macro-structure (A), a typical subcorpus tree (B), and a 

document graph created by cross-classifying metadata (C). 

 

The term virtual subcorpus is also used sometimes to refer to querying subsets of earlier 

queries, i.e. one can dynamically design a ‘subcorpus’ containing all documents matching 

an arbitrary query (e.g. the subcorpus of documents containing the word ‘snow’), and 

work further with these documents (see Kupietz et al. 2010: 1852).  

 While the structures in Figure 1 cover the bulk of corpus resources, some more 

complex situations deserve special mention. Firstly, in parallel corpora (see Chapter 12 in 

this volume) containing aligned text, the concept of document is further complicated. 

Alignment is most often the result of translation corpora, in which each document may 

exist in more than one language, with alignment either simply at the document level, or 

more fine-grained forms of alignment, such as section, paragraph, sentence or word 

alignment (see Romary & Bonhomme 2000 for an extensive discussion). There are also 

more unusual types of alignment, such as partial alignment (e.g. multilingual corpora of 

parallel Wikipedia articles which are similar in content, but not actual translations, Smith 

et al. 2010), corpora aligning editing differences (e.g. corpora of aligned draft revisions, 

Lee et al. 2015) or corpora containing non-native texts next to aligned target hypotheses 

of what native annotators believe a non-native speaker is trying to say in the standard 

target language (see Reznicek et al. 2013). All of these situations complicate the notion of 

a tree-like graph with simple documents as leaves: in such cases, the leaves themselves 

may have a complex macro-structure.  

2.2 Primary data and text representation 

As collections of textual data (in the broad sense, whether written, or transcribed from 

speech, see Wichmann 2008, or even multimodal corpora of sign language utterances, see 
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Crasborn & Sloetjes 2008, Schembri et al. 2013), the most fundamental concern in 

modelling corpora is how text is represented within each document. I will refer to the text 

being represented as the ‘primary data’.
3
 While this may seem uncomplicated, it is 

actually a substantial challenge in many cases. In the first instance, corpus architectures 

differ in whether or not, or to what extent, they preserve features of the original source 

data. One of the most frequent violations of primary data integrity in written corpora is 

white-space preservation. Consider the following example, as formatted, where 

underscores mark otherwise invisible spaces, and the arrow indicates a tab symbol: 

 

(1) Mark agreed. This was, then, the end._ _ 

|-->But I cannot accept it._ _ 

 

Early corpus architectures were aimed at capturing and separating word form tokens, 

using spaces between token units, often followed by a separator and annotations, as 

in ‎(2), where a separator ‘/’ marks the beginning of a POS tag (see also the chapter on 

Corpus Annotation). 

 

(2) Mark/NNP agreed/VBD ./SENT This/DT was/VBD ,/, then/RB ,/, the/DT end/NN 

./SENT But/RB I/PRP can/MD not/RB accept/VB it/PRP ./SENT 

 

For many linguistic research questions, the representation in (2) is adequate, for example 

for vocabulary studies: one can extract type/token ratios to study vocabulary size in 

different texts, find vocabulary preferences of certain authors, etc.  

However for many other purposes, the loss of information about the original text 

from (1) is critical. To name but a few examples:  

                                                 
3
 Note that although A/V signals in multimodal corpora logically precede their transcription, corpus 

architectures usually implement aligned A/V signals as annotations anchored to the transcription using 

timestamps. In other words, in much the same way as the POS tag ‘noun’ might apply to the position in the 

text of a word like ‘bread’, a recording of this word is also a type of datum that can be thought of as 

happening at the point in which ‘bread’ is uttered. In continuous primary data representations (see below), 

A/V timestamp alignment therefore ‘tiles’ the text (no span of audio is left without alignment to some 

token). 
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- Tokens with ambiguous spacing: both ‘can not’ and ‘cannot’ are usually 

tokenized as two units, but to study variation between these forms, one needs to 

represent whitespace somehow 

- Training automatic sentence/document/subsection splitters: Position and 

number of spaces, as well as presence of tab characters are very strong cues for 

such programs. For example TextTiling, a classic approach to automatic 

document segmentation, makes use of tabs as predictors (Hearst 1997). 

- Stylometry and authorship attribution: even subtle cues found in whitespace 

can distinguish authors and styles. For example, US authors are much more likely 

to use double spaces after a sentence final period than UK authors, and specific 

combinations of whitespace practices can sometimes uniquely identify authors 

(see Kredens & Coulthard 2012:506-507). Proportion of white space has also 

been used in authorship and plagiarism detection (Canales et al. 2011). 

Whitespace and other features of the original primary data can therefore be important, 

and some corpus architectures employ formats which preserve and separate the 

underlying data from processes of tokenization and annotation, often using ‘stand-off’ 

XML formats. In stand-off formats, different layers of information are stored in separate 

files using a referencing mechanism which allows us, for example, to leave an original 

text file unchanged. One can then add e.g. POS annotations in a separate file specifying 

the character offsets in the text file at which the annotations apply (e.g. marking that a 

NOUN occurred between characters 4-10; see Tools and Resources for more details). 

 A second important issue in representing language data is the tokenization itself, 

which requires detailed guidelines, and is usually executed automatically, possibly with 

manual correction (see Schmid 2008 for an overview). Although a working definition of 

‘tokens’ often equates them with “words, numbers, punctuation marks, parentheses, 

quotation marks, and similar entities” (Schmid 2008:527), a more precise definition of 

tokens is simply “the smallest unit of a corpus” (Krause et al. 2012:2), where units can 

also be smaller than a word, e.g. in a corpus treating each syllable as a token. In other 

words, tokens are minimal, indivisible or ‘atomic’ units, and any unit to which we want 

to apply annotations cannot be smaller than a token (see Section 3.2).  
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In English, word forms and tokens usually coincide, and tokenization is closely 

related to prevalent part of speech tagging guidelines (the Penn tag set, Santorini 1990 

and CLAWS, Garside et al. 1987, both ultimately going back to the Brown tag set, 

Kučera & Francis 1967). However, modals, negations and other items which sometimes 

appear as clitics are normally tokenized apart, as in the clitics ’ll and n’t in ‎(3) and ‎(4). 

These are represented as separate in the ‘tok’ (token) rows of Figure 2, but are fused on 

the ‘wf’ (word form) level. In (3), separating the clitic ’ll allows us to tag it as a modal on 

the ‘pos’ layer (MD), just like a normal will. The other half of the orthographic sequence 

I’ll is retained unproblematically as I. In ‎(4), by contrast, separating the negation n’t 

produces a segment wo, which is not a ‘normal’ word in English, but is nevertheless 

tagged as a modal.  

 

(3) I’ll do it 

(4) I won’t do it then 

 

In order to make all instances of the lexical item will findable, some corpora rely 

on lemmatization (the lemma of all of these is will), while other corpora use explicit 

normalization. This distinction becomes more crucial in corpora with non-standard 

orthography, as in example ‎(5), featuring the contraction I’m a (frequent in, but not 

limited to African American Vernacular English, Green 2002:196). 

 

(5) I’m a do it (i.e. I’m going to do it) 

 

(3) wf I’ll do it   

norm I will do it   

pos PRP MD VB PRP   

tok I ’ll do it   

(4) wf I won’t do it then 

norm I will not do it then 

pos PRP MD RB VB PRP RB 

tok I wo n’t do it then 
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(5) wf I’m a do it 

norm I am going to do it 

pos PRP VBP VBG TO VB PRP 

tok I ’m a  do it 

 Figure 2. Tokenization, normalization and POS tags for word forms in (3)-(5). 

 

This last example clearly shows that space-delimited orthographic borders, tokenization, 

and annotations at the word form level may not coincide. To do justice to examples such 

as ‎(5), a corpus architecture must be capable of  mapping word forms and annotations to 

any number of tokens, in the sense of minimal units. In some cases these tokens may 

even be empty, as in the position following a in the ‘tok’ layer for (5) – what matters is 

not necessarily that ‘tok’ contains some segmentation of the text in ‘wf’, but rather that 

the positions and borders that are required for the annotation table are delimited correctly 

in order to allow the interpretation of a as corresponding to the ‘norm’ sequence going 

(tagged VBG) and to (tagged TO), assuming this is the desired analysis.
4
  

 For multimodal data in which speakers may overlap, the situation is even more 

complex and an architecture completely separating the concepts of tokens as minimal 

units and word forms becomes necessary. An example is shown in Figure 3. 

 

 spkA I see   but actually I 

posA PRP VBP   PRP RB PRP 

spkB       you know 

posB       PRP VBP 

events  [phone rings]      

time 00:03.1 00:04 00:04.2 00:05.6 00:07 00:07.5 00:08 00:08.1 

 Figure 3. Multiple layers for dialog data with a minimally granular timeline. 

 

The example shows several issues: towards the end, two speakers overlap with word 

forms that only partially occur at the same time, meaning that borders are needed 

                                                 
4
 Some architectures go even further and use an ‘empty’ token layer, using tokens solely as ordered 

positions or time-line markers, not containing text (e.g. the RIDGES corpus, Odebrecht et al. 2016, or 

REM, Klein & Dipper 2016). In such cases, tools manipulating the data can recover the covered text for 

each position from an aligned primary text.  
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corresponding to these offsets; in the middle of the excerpt, there is a moment of silence, 

which has a certain duration; and finally, there is an extra linguistic event (a phone 

ringing) which takes place in part during speaker A’s dialogue, and in part during the 

silence between speech acts.  

An architecture using the necessary minimal units can still represent even this 

degree of complexity, provided that one draws the correct borders at the minimal 

transitions between events, and add higher level spans for each layer of information. In 

cases like these, the concept of minimal token is essentially tantamount to timeline 

indices, and if these have explicit references to time (as in the seconds and milliseconds 

in the ‘time’ layer of Figure 3), then they can be used for A/V signal alignment as well. 

An architecture of this kind is used by concrete speech corpus transcription tools such as 

ELAN (Brugman & Russel 2004) or EXMARaLDA (Schmidt & Wörner 2009), but can 

more generally be thought of as an annotation graph (see the next section).  

A final consideration in cases such as these is the anchoring or coupling of 

specific layers of information in the data model: in the example above, the two ‘pos’ 

layers belong to the different speakers. A user searching for all word forms coinciding 

with a verbal tag in the corpus would be very surprised to find the word I, which might be 

found if all VBP tags coinciding with a word form are retrieved (since the second I 

overlaps with the other speaker’s word know). What is meant in such situations is to only 

look at combinations of POS and word form information from either speaker A or 

speaker B. In other situations, however, one might want to look at any layers containing 

some speaker (e.g. search for anyone saying um), in which case some means of capturing 

the notion of ‘any transcription layer’ is required. These concepts of connecting 

annotation layers (posA belongs to spkA) and applying multiple segmentations to the 

data will be discussed below in the context of graph models for corpus annotations. 

2.3 Data models for document annotations 

The central concern of annotations is ‘adding interpretative, linguistic information to an 

electronic corpus’ (Leech 1997:2), such as adding POS tags to word forms (see Chapter 3 

on Corpus Annotation). However, as we have seen, one may also want to express 

relationships between annotations, grouping together multiple units into larger spans, 

building structures on top of these, and annotating them in turn. For example, multiple 
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minimal tokens annotated as morphemes may be grouped together to delineate a complex 

word form, several such word forms may be joined into phrases or sentences, and each of 

these may carry annotations as well. Additionally, some annotations ‘belong together’ in 

some sense, for example by relating to the same speaker in a dialogue. If a document 

contains these kinds of data, the resulting structure is then no longer a flat table such as 

Figure 2, but rather a graph with explicit hierarchical connections. For planning and 

choosing a fitting corpus architecture, it is important to understand the components of 

annotation graphs at an abstract level, since even if individual XML formats under 

consideration for a corpus vary substantially (see Section 5.1), at an underlying level, the 

most important factor is which elements of an annotation graph they can or cannot 

represent. 

At its most general formulation, a graph is just a collection of nodes connected by 

edges: for example an ordered sequence of words, each word connected to the next, with 

some added nodes connected to multiple words (e.g. a sentence node grouping some 

words, or smaller phrase nodes). Often these nodes and edges will be annotated with 

labels, which usually have a category name and a value (e.g. POS=NOUN); in some 

complex architectures, annotations can potentially include more complex data types, such 

as hierarchical feature structures (see ISO24612). Additionally, some data models add 

grouping mechanisms to annotation graphs, often referred to as ‘annotation layers’, 

which can be used to lump together annotations that are somehow related.
5
  

 Given the basic building blocks ‘nodes’, ‘edges’, ‘annotations’ and ‘layers’, there 

are many different constraints that can be imposed on the combinations of these elements. 

Some data models allow us to attach annotations only to nodes, or also to edges; some 

data models even allow annotations of annotations (e.g. Dipper 2005), which opens up 

the possibility of annotation sub-graphs expressing, for example, provenance (i.e. who or 

what created an annotation and when, see Eckart de Castilho et al. 2017) or certainty of 

                                                 
5
 In some formats, XML namespaces form layers to distinguish annotations from different inventories, such 

as tags from the TEI vocabulary (Text Encoding Initiative, http://www.tei-c.org/) versus corpus specific 

tags (see Höder 2012 for an example). A formal concept of layers to group annotations is provided in the 

Salt data model (Zipser & Romary 2010), and UIMA Feature Structure Types in the NLP tool-chain DKPro 

(Eckart de Castilho & Gurevyich 2014). NLP tool chain components are often thought of as creating 

implicit layers (e.g. a parser component adds a syntactic annotation layer), see e.g. GATE Processing 

Resources or CREOLE Modules in GATE (Cunningham et al. 1997), Annotators components in CoreNLP 

(Manning et al. 2014) or WebLicht Components (Hinrichs et al. 2010).  

http://www.tei-c.org/
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annotations (e.g. an ‘uncertain’ label, or numerical likelihood estimate of annotation 

accuracy). Another annotation model constraint is whether multiple instances of the same 

annotation in the same position are allowed (e.g. conflicting versions of the same 

annotation, such as multiple POS tags or even syntax trees, see Kountz et al. 2008). This 

can be relevant not only for fine-grained manual annotations, but also for the application 

and comparison of multiple automatic tools (several POS taggers, parsers, etc.). Layers 

too can have different constraints, including whether layers can be applied only to nodes, 

or also to edges and annotations, and whether layer-element mapping is 1:1 or whether an 

element can belong to multiple layers. Search engines sometimes organize visualizations 

by layers, i.e. using a dedicated syntax tree visualization for a ‘syntax’ layer, and other 

modules for annotations in other layers. 

Basic annotation graphs, such as syntactically annotated treebanks, can be 

described in simple inline formats. However, as the corpus architecture grows more 

complex or ‘multilayered’, the pressure to separate annotations into different files and/or 

more complex formats grows. To see why, one can consider the Penn Treebank’s 

(Marcus et al. 1993) bracketing format, which was developed to encode constituent 

syntax trees. The format uses special symbols to record not only the primary text, but also 

empty categories, such as pro (for dropped subject pronouns), PRO (for infinitive 

subjects), traces (for postulated movement), and more. In the following tree excerpt from 

the Wall Street Journal portion of the Penn Treebank, there are two ‘empty categories’, at 

the two next to last tokens: a zero ‘0’ tagged as -NONE- standing in for an omitted that 

(i.e. researchers said *that*), and a trace ‘*T*-2’, indicating that a clause has been 

fronted (i.e. the text is “crocidolite is … resilient …, researchers said”, which can be 

considered to be fronted from a form such as “researchers said the crocidolite…”): 

 

( (S  

    (S-TPC-2  

      (NP-SBJ  

… 

        (NP (NN crocidolite) ) 

        (, ,) ) 

      (VP (VBZ is)  
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        (ADJP-PRD (RB unusually) (JJ resilient) ) 

… 

    (, ,)  

    (NP-SBJ (NNS researchers) ) 

    (VP (VBD said)  

      (SBAR (-NONE- 0)  

        (S (-NONE- *T*-2) ))) 

    (. .) )) 

 

This syntax tree defines a hierarchically nested annotation graph, with vertices (V) 

corresponding to the tokens and bracketing nodes, and annotations corresponding to parts 

of speech and syntactic category labels (NP, VP etc.). However much of the information 

is rather implicit; the edges of the tree are marked by nested brackets: the NP dominates 

the noun ‘crocidolite’, etc. Annotations are pure value labels (VBD, VP etc.), and one 

must infer readings for their keys (POS, phrase category). Another ‘edge’ represented by 

co-indexing the trace with its location at S-TPC-2 depends on our understanding that 

*T*-2 is not just a normal token (marked only by a special POS tag -NONE-). This is 

especially crucial for the dropped ‘that’, since the number 0 can also appear as a literal 

token, for example in the following case, also from the Wall Street Journal section of the 

Penn Treebank: 

 

(NP  

   (NP (DT a) (NN vote) ) 

   (PP (IN of)  

  (NP  

    (NP (CD 89) ) 

    (PP (TO to)  

   (NP (CD 0) ))))) 

 

At the very latest, once information unrelated to the syntax tree is to be added to 

the corpus, such as temporal annotation, coreference resolution or named entity tags, 

multiple annotation files will be needed. In fact, the OntoNotes corpus (Hovy et al. 2006), 

which contains parts of the Penn Treebank extended with multiple additional layers, is 

indeed serialized in multiple files for each document, expressing unrelated or only 
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loosely connected layers of annotation. A corpus containing unrelated layers in this 

fashion is often referred to as a ‘multilayer’ corpus, and data models and technology for 

such corpora are an active area of research (see Lüdeling et al. 2005, Burchardt et al. 

2008, Zeldes 2017 and forthcoming). 

 Because of the complexity inherent in annotation graphs, complex tools are often 

needed to annotate and represent multilayer data, and the choice of search and 

visualization tools with corresponding support becomes more limited (see Tools and 

Resources). In the case of formats for data representation, the situation is somewhat less 

critical, since, as already noted, different types of information can be saved in separate 

files. This also extends into the choice of annotation tools, as one can use separate tools, 

for example to annotate syntax trees, typographical properties of source documents, or 

discourse annotations. The greater challenge begins once these representations need to be 

merged. This is often only possible if tools ensuring consistency across layers are 

developed (e.g. the underlying text, and perhaps also tokenization must be kept consistent 

across tools and formats). 

As a merged representation for complex architectures, stand-off XML formats are 

often used (see Section 4), and Application Programmatic Interfaces (APIs) are often 

developed in tandem with such corpora to implement validation, merging and conversion 

of separate representations of the same data (for example, the ANC Tool, used to convert 

data in the American National Corpus and its richly annotated subcorpus, MASC, Ide et 

al. 2010). For search and visualization of multilayer architectures, either a complex tool 

can be used, such as ANNIS (Krause & Zeldes 2016, see Section 5.1), or a combination 

of tools is used for each layer. For example in the TXM text mining platform, Heiden 

(2010) proposes to use a web interface to query the Corpus Workbench (Christ 1994) for 

‘flat’ annotations, TigerSearch (Lezius 2002) for syntax trees, and XQuery for 

hierarchical XML. The advantage of this approach is that it can use off-the-shelf tools for 

a variety of annotation types, and that it can potentially scale better for large corpora, 

since each tool has only a limited share of the workload. The disadvantage is that a data 

model merging results from all components can only be generated after query retrieval 

has occurred in each component. This prevents complex searches across all annotation 

layers: for example, it is impossible to find sentences with certain syntactic properties, 
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such as clefts, which also contain certain XML tags, such as entity annotations denoting 

persons, and also have relational edges with components of other sentences, such as 

coreference with a preceding or following entity annotation. These kinds of combinations 

can be important for example for studying the interplay between syntax and semantics, 

especially at the levels of discourse and pragmatics. 

3. Case studies 

3.1 The GUM corpus 

The Georgetown University Multilayer corpus (GUM, Zeldes 2017), is a freely available 

corpus of English Web genres, created using ‘class-sourcing’ as part of the Linguistics 

curriculum at Georgetown University. The corpus, which is expanded every year and 

currently contains over 64,000 tokens, is collected from four open access sources: 

Wikinews news reports, Wikimedia interviews, wikiHow how-to guides and Wikivoyage 

travel guides. Its architecture can therefore be considered to follow the common tree-style 

macro-structure with four subcorpora, each containing simple, unaligned documents. The 

complexity of the corpus architecture results from its annotations: as the data is collected, 

student annotators iteratively apply a large number of annotation schemes to their data 

using different formats and tools, including document structure in TEI XML, POS 

tagging, syntactic parsing, entity and coreference annotations and discourse parses in 

Rhetorical Structure Theory. The complete corpus covers over 50 annotation types (see 

http://corpling.uis.georgetown.edu/gum/). A single tokenized word in GUM therefore 

often carries an annotation graph of dozens of nodes and annotations, illustrated using 

only two tokens from the corpus in Figure 4, which shows the two tokens I know. 

 

http://corpling.uis.georgetown.edu/gum/
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Figure 4. Annotation graph for the tokens I know in an interview from GUM. 

 

At an abstract level, the boxes in Figure 4 represent general graph nodes from the 

set V. The two tokens in the shaded boxes towards the bottom of the image are somewhat 

special nodes in that they carry both a variety of annotations (part of the set A) and 

references to primary text data (I and know). Their annotations including three distinct 

POS tags based on different tag sets, as well as the lemma and grammatical function 

annotation. These token nodes also function as anchors for the remaining nodes in the 

graph: every other node in the figure is attached directly or indirectly to the tokens via 

edges. Layers are represented by distinct ovals; in this case, the tokens have not been 

placed in any layer, but all other nodes and edges belong to exactly one layer. For 

example, there is a dependency edge at the bottom of the figure connecting the two 
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tokens and carrying a label (func=nsubj, since I is the nominal subject of know), 

belonging to a layer of ‘dependencies’. The single node in the layer ‘sentence’ above the 

tokens is annotated as s_type=decl (declarative sentence), and is attached to both tokens, 

but the edges attaching it are unannotated (no labels). Finally, some layers, such as the 

constituent layer, contain a complex subgraph: an NP node is attached to the token I in 

the ‘constituents’ layers, and a VP node is attached to know, and together they attach to 

the S node denoting the clause. Similarly, the discourse layer, of which we only see one 

incoming edge, is the entry point into the discourse annotation part of the graph, which 

places multiple tokens in segments, and then constructs a sub-graph made of sentences 

and clauses based on Rhetorical Structure Theory (RST, Mann & Thompson 1988). The 

edge is annotated as ‘background’, indicating this clause gives background information 

for some other clause. 

Note that it is the corpus designer’s decision which elements are grouped in a 

layer. For example, the constituent annotation S for the clause has a similar meaning to 

the sentence annotation in the ‘sentence’ layer, but these have been modeled as separate. 

As a result, it is at least technically possible for the corpus to have conflicting constituent 

trees and sentence span borders. If these layers are generated by separate automatic or 

manual annotation tools, then such conflicts are in fact likely to occur over the course of 

the corpus. Similarly, a speaker annotation (‘sp_who’) is attached to both tokens, as is the 

sentence annotation, but it is conceivable that these may conflict hierarchically: a single 

sentence annotation may theoretically cover tokens belonging to different speakers, 

which may or may not be desirable (e.g. for annotating one speaker completing another’s 

sentence). This data models allows for completely independent annotation layers, united 

only by joint reference to the same primary text.  

3.2 The MERLIN Corpus 

The MERLIN project (Multilingual Platform for European Reference Levels: 

Interlanguage Exploration in Context, Boyd et al. 2014) makes three learner corpora 

available in the target languages Czech, German and Italian, which are richly annotated 

and follow a comparable architecture to allow for cross-target language and native 

language comparisons. The project was conceived to collect, study and make available 

learner texts across the levels of the Common European Framework of Reference for 
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Languages (CEFR), which places language learners at levels ranging from A1 (also 

called ‘Breakthrough’, the most basic level) to C2 (‘Mastery’). Although these levels are 

commonly used in language education and studies of second language acquisition, 

learners often have little or no possibility to find texts coming from these levels. The 

MERLIN corpora fill this gap by making texts at the A1-C1 levels publically available in 

the three target languages above. 

 To see how the MERLIN corpora take advantage of their architecture in order to 

expose learner data across levels we must first consider how users may want to access the 

data, and what the nature of the underlying primary textual data is. On one level, 

researchers, language instructors and other users would like to be able to search through 

learner data directly: the base text is, trivially, whatever a learner may have written. 

However, at the same time the problems discussed in Section 2.2 make searching through 

non-native data, which potentially contains many errors,
6
 non-trivial. For example, the 

excerpt from one Italian text in (6) contains multiple errors where articles should be 

combined with prepositions: once, da ‘from’ is used without an article in da mattina 

‘from (the) morning’ for dalla ‘from the (feminine)’, and once, the form da is used 

instead of dal ‘from the (masculine)’. The data comes from a Hungarian native speaker, 

rated at an overall CEFR ranking of B2, as indicated by document metadata in the corpus. 

 

(6) Da   mattina    al   pomerrigio? Da prossima mese     posso   lavorare? 

from morning to.the afternoon   ? from     next     month can.1.SG      work    ? 

‘From morning to the afternoon? From next month I can work?’ 

 

This data is invaluable to learners and educators interested in article errors. However 

users interested in finding all usages of da in the L2 data will not be able to distinguish 

correct cases of da from cases that should have dal or dalla. At the same time, less 

obvious errors may render some word forms virtually unfindable. For example, the word 

pomeriggio ‘afternoon’ is misspelled in this example, and should read pomerrigio (the ‘r’ 

                                                 
6
 This is not to say that native data does not contain errors from a normative perspective, and indeed some 

corpora, such as GUM in Section 3.1, do in fact annotate native data for errors. 
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should be double, the ‘g’ should not be). As a result, users who cannot guess the actual 

spelling of words they are interested in will not be able to find such cases. 

 In order to address this, MERLIN includes layers of target hypotheses (TH, see 

Reznicek et al. 2013). These provide corrected versions of the learner texts: At a 

minimum, all subcorpora include a span annotation called TH1, which gives a minimally 

grammatical version of the learner utterance, correcting only a much as necessary to 

make the sentence error-free, but without improving style or correcting for meaning.
7
 

Figure 5 shows the learner utterances on the ‘learner’ layer, while the TH1 layer shows 

the minimal correction: preposition+article forms have been altered, and a word-order 

error in the second utterance has been corrected (the sentence should begin Posso 

lavorare ‘can I work’). The layer TH1Diff further notes where word form changes have 

occurred (the value ‘CHA’), or where material has been moved, using ‘MOVS’ (moved, 

source) and ‘MOVT’ (moved, target).
8
 These ‘difference tags’ allow users to find all 

cases of discrepancies between the learner text and TH1 without specifying the exact 

forms being searched for. 

 

 

Figure 5. Annotation grid for a learner utterance, with target hypothesis (TH) and error 

annotations, visualized using ANNIS (see Section 5.1). 

 

 One consequence of using a TH layer for the architecture of the corpus is that the 

data may now in effect have two conflicting tokenizations: on the ‘learner’ layer, the first 

                                                 
7
 See Reznicek et al. (2012) for the closely related Falko corpus of L2 German, which developed minimal 

TH annotation guidelines. Like Falko, a subset of MERLIN also includes an ‘extended’ TH layer, called 

TH2, on which semantics and style are also corrected. A closely related concept to TH construction which 

is relevant to historical corpora is that of normalization: non-standard historical spellings can also be 

normalized to different degrees, and similar questions about the desired level of normalization often arise. 
8
 Further tags include ‘DEL’ for deleted material, and ‘INS’ for insertions. 
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‘?’ and the second ‘Da’ stand at adjacent token positions; on the TH1 layer, they do not. 

To make it possible to find ‘?’ followed by ‘Da’ in this instance, while ignoring or 

including TH layer gaps, MERLIN’s architecture explicitly flags these annotation layers 

as ‘segmentations’, allowing a search engine to use either one for the purpose of 

determining adjacency as well as context display size (i.e. what to show when users 

request a windows of +/- 5 units).  

 One shortcoming of TH annotations is that they cannot generalize over common 

error types which are of interest to users: for example, they do not directly encode a 

concept of ‘article errors’. To remedy this, MERLIN includes a wide range of error 

annotations, with a major error-annotation category layer (EA_category, e.g. 

G_Morphol_Wrong for morphological errors), and more fine grained layers, such as 

G_Morphol_Wrong_type. The latter indicates a ‘gender’ error on prossima ‘next 

(feminine)’ in Figure 5, which should read prossimo ‘next (masculine)’ to agree with 

mese ‘month’. Note however that the architecture allows multiple conflicting annotations 

at the same position: two ‘EA_category’ annotations overlap under prossima, indicating 

the presence of two concurrent errors, and there is no real indication, except for the 

length of the span, that the ‘gender’ error is somehow paired with the shorter 

EA_category annotation. Additionally, the EA layers cannot encode all foreseeable errors 

of interest: for example, there is no specific category for cases where da should be dal 

(but not dalla). This type of query can only be addressed using the running TH layer.
9
 

 Finally it should be noted that both tokens and annotations, including TH layers, 

can be used as entry points for more complex annotation graphs. In the case of MERLIN, 

an automatically generated dependency syntax parse layer was added on top of learner 

layer, as shown in Figure 6.  

                                                 
9
 A more minimal type of TH analysis is also possible, in which only erroneous tokens are given a 

correction annotation (see e.g. Tenfjord et al. 2006 for a solution using TEI XML). A limitation of this 

approach is that the TH layer itself cannot be annotated as a complete independent text (e.g. to compare 

POS tag distributions in the original and TH text), and that gaps of the type seen in Figure 5 cannot be 

represented. 
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Figure 6. Dependency parse attached to the annotations of example (6) in MERLIN. 

 

If the corpus architecture has successfully expressed all annotations including the parse in 

a single graph, then it is possible to query syntax trees in conjunction with other layers. 

For example we can obtain syntactic information, such as the most common grammatical 

functions and distance between words associated with movements (MOVS/MOVT) 

across gaps on the TH layer. This would not be possible if TH analysis had been 

implemented in separate files, without consideration for the alignment of each 

annotation’s structures or the handling of gaps and segmentation conflicts. Similar 

additional graphs would also be conceivable, for example to link specific MOVS and 

MOVT locations, but these have not yet been implemented – TH1Diffs are currently 

expressed as flat annotations whose interconnections are left unexpressed in the data 

model. 

4. Critical assessment and future directions  

At the time of writing, corpus practitioners are in the happy position of having a wide 

range of choices for concrete corpus representation formats and tools. However, few tools 

or formats can do ‘everything’, and more often than not, the closer they get to this ideal, 

the less convenient or optimized they are for any one task. To recap some important 

considerations in choosing a corpus architecture and a corresponding concrete 

representation format: 

 

- Is preservation of the exact underlying text (e.g. whitespace preservation) 

important? 

- Are annotations very numerous or involve conflicting spans to the extent that a 

stand-off format is needed? 
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- Are annotations arranged in mutually exclusive spans? Are they hierarchically 

nested? Are discontinuous annotations required? 

- Are complex metadata management and subcorpus structure needed, or can this 

information be saved separately in a simple table? 

- Does the data contain A/V signals? If so, are there overlapping speakers in 

dialogue? 

- Is parallel alignment needed, i.e. a parallel corpus? 

 

These questions are important to address, but the answers are not always straightforward. 

For example, one can represent ‘discontinuous’ annotations slightly less faithfully by 

making two annotations with some co-indexed naming mechanism (cf. MOVS and 

MOVT in Section 3.2). This may be unfaithful to our envisioned data model, but will 

greatly broaden the range of tools that can be used.  

In practice, a large part of the choice of corpus architecture is often dictated by the 

annotation tools that researchers wish to use, and the properties of their representation 

formats. Using a more convenient tool and compromising the data model can be the right 

decision if this compromise does not hurt our ability to approach our research questions 

or applications. For example, many spoken corpora containing dialogue do not model 

speaker overlap, instead opting to place overlapping utterances in the order in which they 

begin. This can be fine for some research questions, for example for a study on word 

formation in spoken language; but not for others, e.g. for pragmatic studies of speech act 

interactions in dialogue. Table 1 gives a (non-exhaustive) overview of some popular 

corpus formats and their coverage in terms of the properties discussed above. A good 

starting point when looking to choose a format is to use this table or construct a similar 

one, note supported and unsupported features, and rule out formats that are not capable of 

representing the desired architectural properties. 
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CoNLLU yes no dep
10

 no no no no no no no 

CWB no no no yes no yes no yes no no 

Elan yes inline no yes no no yes yes yes yes 

EXMARaLDA yes inline no yes no no yes yes yes yes 

FoLiA yes inline yes yes yes no no yes yes no 

GrAF yes yes yes yes yes no
11

 no
11

 yes yes no 

PAULA XML yes yes yes yes yes yes yes yes yes yes 

PTB no no yes no no no no no no no 

TCF yes inline yes yes yes no no yes no no 

TEI XML yes yes
12

 yes no
12

 no
12

 yes yes yes yes yes 

TigerXML no no yes no yes no
13

 no yes
13

 yes no 

tiger2 yes yes yes yes yes no no yes yes no 

WebAnno yes inline dep
10

 yes no no no no no no 

 

Table 1. Data model properties for a range of open corpus formats. 

 

 CoNLLU is a popular format in the family of tab-delimited CoNLL formats, 

which is used for dependency treebanks in the Universal Dependencies project 

(http://universaldependencies.org/). It is enriched with ‘super-token’-like word forms (i.e. 

multi-token orthographic word forms such as ‘I’m’), open-ended key-value pairs on 

tokens, and sentence level annotations as key-value pairs. The CWB vertical format 

(sometimes also called ‘TreeTagger format’, due to its compatibility with the tagger by 

Schmid 1994), is an SGML format with one token per line, accompanied by tab-

delimited token annotations, and potentially conflicting, but not hierarchically nested 

element spans. Elan and EXMARaLDA are two popular grid-based annotation tools, 

which do not necessarily model a token concept, instead opting for unrestricted layers of 

spans, some of which can be used to transcribe texts, while others express annotations. 

They offer excellent support of aligned A/V data and model a concept of potentially 

                                                 
10

 The value ‘dep’ indicates formats with some capacity to express dependency edges between flat units 

(including, e.g. syntactic dependency or coreference annotation), but without complex node hierarchies. 
11

 While GrAF does not explicitly support multiple overlapping speakers or parallel corpora, there are some 

conceivable ways of representing these using the available graph structure. However I am not aware of any 

corpus or tool implementing these with GrAF. 
12

 Stand-off annotation has been implemented in TEI XML (see Chapter 20.5 of the TEI p5 guidelines, 

http://www.tei-c.org/) and can cover a wide range of use cases for discontinuous annotations and hierarchy 

conflicts. However it is not frequently used in the TEI community, and there are some limitations (see 

Bański 2010 for analysis).  
13

 TigerXML itself does not implement parallel alignment, but an extension format known as STAX has 

been developed for parallel treebanking in the Stockhold TreeAligner (Lundborg et al. 2007). Metadata in 

TigerXML is limited to a predetermined set of fields, such as ‘author’, ‘date’ and ‘description’. 

http://universaldependencies.org/
http://www.tei-c.org/
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multiple speakers, complete with speaker-related metadata, which makes them ideal for 

dialogue annotation. FoLiA, GrAF and PAULA XML are all forms of graph-based stand-

off XML formats, though FoLiA’s implementation is actually contained in a single XML 

file, with document internal references. GrAF has the status of an ISO standard (ISO 

24612), and has been used to represent the American National Corpus 

(https://www.anc.org/). FoLiA has the advantage of offering a complete annotation 

environment (FLAT, http://flat.science.ru.nl/), though PAULA and GrAF can be edited 

using multi-format annotation tools such as Atomic (http://corpus-tools.org/atomic/). 

PAULA is the only format of the three which implements support for parallel corpora and 

overlapping speakers.  

Penn Treebank bracketing (PTB), TigerXML and tiger2 are formats specializing 

in syntax annotation (treebanks). The PTB format is the most popular way of representing 

projective constituent trees (no crossing edges) with single node annotations (part of 

speech or syntactic category). It is highly efficient and readable, but has some limitations 

(see the ‘crocidolite’ example above). TigerXML is a more expressive XML format, 

capable of representing multiple node annotations, crossing edges, edge labels and two 

distinct types of edges. The tiger2 format (Romary et al. 2015) is an extension of 

TigerXML, outwardly very similar in syntax, but with unlimited edge typing, metadata, 

multiple/conflicting graphs per sentence and other more ‘graph-like’ features. It enjoys an 

ISO standard status (ISO 24615). 

TCF (Hinrichs et al. 2010) is an exchange format used by CLARIN infrastructure, 

and in particular the WebLicht NLP toolchain. It is highly expressive for a closed set of 

multilayer annotations, and has built in concepts for tokenization, sentence segmentation, 

syntax and entity annotation. It is also one of the supported formats of the popular 

WebAnno online annotation tool (Yimam et al. 2013), which also supports a variety of 

formats of its own, including its highly expressive UIMA based format (serializable as an 

‘inline stand-off’ XMI format), and a whitespace preserving tab-delimited export, called 

WebAnno TSV.  

An important trend in corpus building tools looking forward is a move away from 

saving and exchanging data in local files on annotators’ computers or private servers. 

Corpora are increasingly built using public, version-controlled repositories on platforms 

https://www.anc.org/
http://flat.science.ru.nl/
http://corpus-tools.org/atomic/
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such as GitHub. For example, the Universal Dependencies project is managed entirely on 

GitHub, including publically available data in multiple languages and the use of GitHub 

pages and issue trackers for annotation guidelines and discussion. Some tools (e.g. the 

online XML and spreadsheet editor GitDox, Zhang & Zeldes 2017) are opting for online 

storage on GitHub and similar platforms as their exclusive file repository. In the future 

we will hopefully see increasing openness and interoperability between tools which adopt 

open data models and best practices that allow users to benefit from and re-use existing 

data and software.  

5. Resources 

5.1 Tools 

An important set of tools influencing the choice of corpus architecture is NLP pipelines 

and APIs, which allow users to construct automatically tagged and parsed representations 

with complex data models (and these can be manually corrected if needed). Some 

examples include Stanford CoreNLP (Manning et al. 2014), Apache OpenNLP 

(https://opennlp.apache.org/), Spacy (https://spacy.io/), the Natural Language Toolkit 

(NLTK, http://www.nltk.org/), GATE (Cunningham et al. 1997), DKPro (Eckart de 

Castilho & Gurevyich 2014), NLP4J (https://emorynlp.github.io/nlp4j/) and FreeLing 

(http://nlp.cs.upc.edu/freeling/).  

The output formats of NLP tools is often not compatible with corpus search 

architectures, and may not be readily human-readable (for example, .json files offer very 

efficient storage, but are only meant to be machine readable). For this reason, NLP tool 

output must often be converted into corpus formats such as those in Table 1. Versatile 

conversion tools, such as Pepper (http://corpus-tools.org/pepper/), can be used to convert 

between a variety of formats and make data accessible to a wider range of tools. Another 

important feature supported by tools such as Pepper is merging data from several formats 

into a format capable of expressing the multiple streams of input data. Using a merging 

paradigm makes it possible to build corpora that require some advanced features (e.g. 

conflicting spans, or multimodal time alignment), which are not available simultaneously 

in the tools we wish to use, but can be represented separately in a range of tools, only to 

be merged later on. For example, the GUM corpus described above is annotated using 

five different tools which are optimized to specific tasks, and the merged representation is 

https://opennlp.apache.org/
https://spacy.io/
http://www.nltk.org/
https://emorynlp.github.io/nlp4j/
http://nlp.cs.upc.edu/freeling/
http://corpus-tools.org/pepper/
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created automatically (this is sometimes called a ‘build bot’ strategy; for an example see 

https://corpling.uis.georgetown.edu/gum/build.html). 

Finally, corpus architecture considerations also interact with the choice of search 

and visualization facilities that one intends to use. Having an annotation tool which 

supports a complex data model may be of little use if the annotated data cannot be 

accessed and used in sensible ways later on. Some corpus practitioners use scripts, often 

in Python or R, to evaluate their data, without using a dedicated search engine (see 

Chapter 9, Programming for Corpus Linguistics). While this approach is very 

versatile, it is also labor intensive: for each new type of information, a new script must be 

written which traverses the corpus in search of some information. It is therefore often 

desirable to have a search engine that is capable of extracting data based on a simple 

query. For corpora that are meant to be publically available to non-expert users, this is a 

necessity. In public projects, a proprietary search engine tailored explicitly for a specific 

corpus is often programmed, which cannot easily be used for other corpora. Here I 

therefore focus on generic, freely available tools which can be used for a variety of 

datasets.  

The Corpus Workbench (Christ 1994) and its web interface CQPWeb (Hardie 

2012) are amongst the most popular tools for corpus search and visualization, but are not 

capable of representing hierarchical data, and therefore they cannot be used for treebanks. 

Grid-like data, e.g. from EXMARaLDA or Elan files, can be indexed for search using 

EXMARaLDA’s search engine, EXAKT (http://exmaralda.org/en/exakt-en/). For 

treebanks, there are some local user tools (e.g. TigerSearch, Lezius 2002, or command 

line tools such as TGrep2, http://tedlab.mit.edu/~dr/Tgrep2/, the successor of the original 

Penn Treebank tool, or Stanford’s Tregex, https://nlp.stanford.edu/software/tregex.shtml). 

There are only a few dedicated web interfaces for treebanks, notably Ghodke & Bird’s 

(2012) highly efficient Fangorn (for projective, unlabeled constituent trees), and 

TüNDRA, the Tübingen aNnotated Data Retrieval Application, for TigerXML style trees 

and dependency trees (Martens 2013). For small-medium sized multilayer corpora, with 

syntax trees, entity and coreference annotation, discourse parses and more, ANNIS 

(http://corpus-tools.org/annis/) offers a comprehensive solution supporting highly 

complex graph queries over hierarchies, conflicting spans, aligned A/V data and parallel 

https://corpling.uis.georgetown.edu/gum/
http://exmaralda.org/en/exakt-en/
http://tedlab.mit.edu/~dr/Tgrep2/
https://nlp.stanford.edu/software/tregex.shtml
http://corpus-tools.org/annis/
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corpora. For larger datasets, KorAP (Diewald et al. 2016) presents a search engine 

supporting a substantial subset of graph relations, accelerated for text search using 

Apache Lucene. 

5.2 Further reading 

For readers with some corpus building experience, Kübler & Zinsmeister (2015) gives a 

comprehensive overview of many aspects of complex annotated corpora, including data 

models and corpus query languages for treebanks and multilayer corpora. McEnery et al. 

(2006) is a good hands-on introduction for readers with less background, and presents 

and discusses both central readings on corpus design and practical case studies with a 

variety of corpora, including multilingual data and alignment. Weisser (2016) is also a 

practical guide for beginners, focusing on flat-annotated corpora, as well as working with 

some more complex data, such as the British National Corpus (BNC, 

http://www.natcorp.ox.ac.uk/). More information on specific topics in corpus architecture 

can also be found in selected chapters from Lüdeling & Kytö (2008-2009). 
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