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Plan 

I. Discourse Relations 
- What are discourse relations? 

- Rhetorical Structure Theory (RST) in a nutshell 

- Datasets – RST-DT and GUM 

II. Relation Signaling in Textual Data 
- Explicit and implicit relations 

- The RST Signalling Corpus 

- Finding signals in a text based model  

III. Rich features 
- Should we add annotations to embeddings? 

- Ablation studies with feature rich models 
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Discourse relations 

What relations exist between utterances as a 
text unfolds? 

 
 1.  a. [[John pushed Mary.]cause She fell.] 

  b. [Mary fell. [John pushed her.]cause] 

    (see Webber 1988, Asher & Lascarides 2003) 

 

 2.  [[[They left lights on]cause so Ellie got mad.]  
  [That’s totally unreasonable]evaluation] 
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Discourse relations 

Some questions: 
 What relations exist? (Knott 1996, Knott & Sanders 1998) 

• Cross-linguistically? (van der Vliet & Radeker 2014) 

• In genres? (Taboada & Lavid 2003) 

 How are relations marked? (Taboada & Das 2013)  

• Explicit signals: “on the other hand” or “although” 

• Implicit signals: coreferent mentions, genre conventions, … 

 

To answer these questions we build  
discourse annotated corpora 
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Discourse annotation 

 The task – given an arbitrary text: 
 Segment into ‘units’ (a.k.a. Elementary Discourse Units) 
 Establish the connections between these EDUs 
 Classify these connections 

 Three main frameworks have implemented these tasks: 
 Penn Discourse Treebank (PDTB, Prasad et al. 2008) – partial parses  
 Segmented Discourse Representation Theory (SDRT, Asher & Lascarides 

2003) – complete DAGs 
 Rhetorical Structure Theory (Mann & Thompson 1988) – complete trees 
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PDTB V2 (Prasad et al. 2008) 



Rhetorical Structure Theory 

 In RST, a text is a tree of clauses 
Syntax trees 

 head > expansion 

 Leaf = token 

 Non-terminal = phrase 

 Grammatical function 
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 nucleus > satellite 

 Leaf = EDU 

 Non-terminal = span 

 Discourse function 
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Trying it out – what are these? 

Find the direction and label – choose from: 
 cause 

 purpose 

 elaboration 

 concession 
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Why is this important? 

 

 

 

 

 

 

 

 

 

(example from RST Website: http://www.sfu.ca/rst/) 
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Get  most 

important unit 

(Summarization)  

Identify 

specific 

relations (IR) 

Build 

discourse 

plan (NLG) 
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Topics for today 

What information identifies relations? 
• For humans 

• For NLP 

• How much of the information is ‘explicit’?  
(cf. Sporleder & Lascarides 2005, 2008, Taboada 2009) 

Can we identify relations directly from text? 
• Do machine learning algorithms and humans notice the 

same signals? 

• If/when not, why? What features do we miss? 

• Can we add them as new layers to our corpus data? 

What data can we use? 
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RST Discourse Treebank (Carlson et al. 2003) 

180K tokens (WSJ) 

POS + syntax trees 

60% overlap with OntoNotes: (Hovy et al. 2006) 

 NER (named entities only) 

 Partial coreference (no singletons, indefinites) 

 PropBank annotations 
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Georgetown University Multilayer corpus 
(Zeldes 2017) 

 POS tagging (PTB, CLAWS, TT, UPOS) 
 Sentence type (SPAAC++) 
 Document structure (TEI) 
 Syntax trees (PTB + Stanford + UD) 
 Information status (SFB632) 
 (Non-) named entity types 
 Coreference + bridging 
 Rhetorical Structure Theory 
 Speaker information, ISO time… 

text type source texts tokens 

Academic Various 6 5,210 

Biographies Wikipedia 6 5,049 

Fiction Small Beer Press 7 5,912 

Interviews Wikinews 19 18,037 

News Wikinews 21 14,093 

Travel guides Wikivoyage 17 14,955 

Forum discussions reddit 6 5,174 

How-to guides wikiHow 19 16,920 

Total 101 85,350 

http://corpling.uis.georgetown.edu/gum/  
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II. Relation Signaling 



Explicit signals 

Can we identify relations in data? (Sanders et al. 1992, 

Knott & Dale 1994, Taboada & Lavid 2003, Stede & Grishina 2016)  
 Discourse markers – however, but, if, and, as well as 

 Adverbials – clearly, supposedly, in reality… 

 Content words – good (signals evaluation?), last year 
(signals temporal sequence? Circumstance?) 

 

Annotators use cue words as diagnostics: 
• “could I connect these with ‘because’?” 
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Frequentist approaches 

Studies often cross-tabulate: words ~ relations 

Problems:  
 Frequency thresholds 

 Ambiguity (“and” may not  
be associated with relations and 
appears with all relations –  
not a Discourse Marker?) 

 Context sensitivity – some words  
are cues in specific environments 
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Toldova et al. 2017 
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Text to labels approach 

The core idea of our work is to learn a 
transformation from a bag-of-words surface 
representation into a latent space in which 
discourse relations are easily identifiable. 
• Ji & Eisenstein (2014:13) 

 

Echoed in much NLP in recent years:  
 text -> labels 
 But really:  

text -> embeddings <--> labels 
(cf. Braud et al. 2016) 
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Relation classification with RNNs 

RNNs can recognize relations from text  
(Braud et al. 2017; cf. entailment work, Rocktäschel et al. 2016) 

Can use encoder architecture, single output 
multinomial classifier 
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    If       we          were  fish 

What were the 

signals? 
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A neural approach to signals with RNNs 

The RNN probably already had it at If… 

To find signals, we can listen to output at every 
token (but loss still based on EDU relation) 
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Implemented with Bi-LSTM (TensorFlow) 
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Character 
embeddings 

Word 
embeddings 
(GloVe 300, 

Pennington et 
al. 2014) 

cond caus cond elab 

LSTM LSTM LSTM LSTM 

LSTM LSTM LSTM LSTM Forward  
LSTM 

Backward 
LSTM 

Hidden:  200 

Optimizer:  Adam 

(rec.) dropout:  0.5 

Minibatch:  20 

Activation:  tanh 

 

Batch normalization 

Trainable embeddings 
if we were fish 
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Adding CRF (Huang et al. 2015, Ma & Hovy 2016) 
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if we were fish 

cond cond cond cond 

LSTM LSTM LSTM LSTM 

LSTM LSTM LSTM LSTM Forward  
LSTM 

Backward 
LSTM 

CRF 

Hidden:  200 

Optimizer:  Adam 

(rec.) dropout:  0.5 

Minibatch:  20 

Activation:  tanh 

 

Batch normalization 

Trainable embeddings 

Character 
embeddings 

Word 
embeddings 
(GloVe 300, 

Pennington et 
al. 2014) 
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Single output performance 

Not so interesting, but: 
 RSTDT – relation accuracy by tokens:  

acc: 47.43% | f1: 41.44 
• Standard train/test split 
• 60 relations [some very rare] – note majority baseline is ~33% 

 

State of the art on RSTDT, hard to compare: 
 Ji & Eisenstein (2014), using engineered features, full 

parsing: 61.75% (by EDUs, 18 relations) 

 Braud et al. (2016), (2017) with RNNs, pretraining on 
PDTB, coref and more: 
60.01% (by EDUs, 18 relations) 
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Visualizing token-wise softmax 

Basic idea – find the most ‘convincing’ tokens: 
 Use tokens' softmax probability of correct relation 

 Shade by: 
• Proportion of maximum  softmax  

probability in sentence 

• Proportion of maximum softmax  
probability in document 
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Visualizing token-wise softmax 

 [This occurs for two reasons :]preparation [As it 

moves over land ,]circumstance [it is cut off from the 

source of energy driving the storm …]cause 

 [Combine 50 milliliters of hydrogen peroxide and 

a liter of distilled water in a mixing bowl .]sequence 

[A ceramic bowl will work best ,]elaboration [but 

plastic works too .]concession 
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GUM 

data 

Ambiguous? 
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Addressing ambiguity 

We can get ambiguity scores based on range of 
softmax probabilities (data: GUM) 
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Addressing ambiguity 

 Irrelevant ‘and’s: (RST-DT) 

 [but will continue as a director and chairman of the executive 
committee .]elaboration  

 [and one began trading on the Nasdaq/National Market System 
last week .]inverted 

 Important ‘and’s: (RST-DT) 

 [and is involved in claims adjustments for insurance 
companies . ]List 

 [-- and from state and local taxes too , for in-state 
investors .]elaboration 

Feature Rich Models for Discourse Signaling CLSP Seminar, JHU 

23 



Evaluating plain text signals 

There results are qualitative, non-systematic 

 Ideal scenario - compare to ‘gold standard’  
 Use RST-DT Signalling Corpus (Taboada & Das 2013)  

 Open ended annotation of any kind of relation signal: 
• Discourse markers, other expressions 

• Syntactic devices, cohesion 

• Genre conventions… 
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Evaluating signals 

Problems: 
 Signals annotated  

at node level 

 Non trivial to  
associate with  
specific EDUs 

 Location of signal  
in words is not  
specified 
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Signalling Corpus in UAM 

(O’Donnell 2008) 
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Toy evaluation 

3 documents from Signalling Corpus (RST-DT/test) 

 113 EDUs 

 210 nodes 

 153 signals manually inspected 
• Only 83 attributable to a/some tokens  

(not, e.g.: genre, zero relative, graphical layout…) 

 In a remark [someone should remember this time next year,] 

• Only 47 reasonably detectable by net 
(not, e.g.: lexical chain, syntactic parallelism) 

 Congress gave Senator Byrd's state … [Senator Byrd is chairman..] 
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Results 

Network ranks all words (low precision if 0 signals) 

Use recall rate @k to evaluate 
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III. Feature rich models 



Can we get at ‘non-resolvable’ cases? 

A plain text RNN can’t see many things: 
 Repetition 
• Lexical entity coreference 

• Pronoun resolution 

• Restatements… 

 Non-token signals 
• Syntax clause types and attachment 

• Zero relatives, other ‘meaningful absences’ 

 Genre (is that ‘inside’ the text already?) 

 Graphical layout (images, fonts, headings, …) 

 … 
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Adding annotations to vectors 
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Adding annotations to vectors 
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Adding annotations to vectors 
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Genre 

Genres vary significantly in  
communicative means 

Prior likelihoods of relations vary: 
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Quiz: guess which! 

o Academic 

o Bio 

o Fiction 

o Interview 

o News 

o Reddit 

o Voyage 

o Wikihow 

motivation
condition

sequence
preparation

joint
ROOT

purpose
elaboration

result
concession

contrast
evidence

circumstance
background

cause
justify

antithesis
restatement

evaluation
solutionhood

0.0 0.2 0.4 0.6 0.8 1.0

interview news voyage whow
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Genre 
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Plain: 

[1 teaspoon baking powder]joint 

 

+Genre: (whow) 

[1 teaspoon baking powder]joint 

wikiHow: How to Make Vegan Cupcakes 

Plain: 

[It has lots of local boutiques…]elab 

+Genre: (voyage) 

[It has lots of local boutiques…]elab 

Plain: 

[I do n’t like the doctor , ]elab 

+Genre: (fiction) 

[I do n’t like the doctor , ]eval 

Wikivoyage: Oakland 

“Oversite” by 

Maureen F. McHugh 
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Adding annotations to vectors 
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text genre s_type func pos entity coref layout all
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POS and dependency function 

The same strings can mean different things: 
 meaning/NN is self-contained within the text 

 meaning/VVG as a first strike weapon 

(cf. also ‘like’) 

 

Similarly for grammatical function: 
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He reemerged in September 1859 … 
 

Plain: 

[laying claim to the position of Emperor of the United States . ]seq 
` 

+Deprel: 

[laying claim to the position of Emperor of the United States . ]seq 

Emperor Joshua Norton; 

Wikipedia 
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Adding annotations to vectors 
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Coreference and entities 

Relationship between referential accessibility 
and RST graph (Veins Theory, Cristea et al. 1998) 

Coreference likelihood can be predicted by 
discourse parse (Zeldes 2017b) 
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Coreference and entities 

Again, different priors: 
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ROOT
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Coref and entity resolution: 

- Know pronoun entities 

- Mentioned in RST parent? 

 

Plain: 

[based on the knowledge 

and skills they feel 

librarians need ;]elab 

 

+Coref+Entities: 

[based on the knowledge 

and skills theyperson feel 

librarians need ;]elab 
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Adding annotations to vectors 
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Graphical layout 

We have TEI XML tags for: 
 Paragraphs 

 Headings 

 Images and captions 

 Ordered / unordered lists 

 Beginning / end of list items 

 … 
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<list type="ordered"> 

<item n="1"> 

<head> 

<s type="other"> 

Method NN method 

One CD One 

of IN of 

Two CD Two 

: : : 

… 
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Plain: 

[Listen up , kids :]prep  

 

+Layout annotations: 

[Listen up , kids : ]prep 

Graphical layout 
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Plain: 

[For this question I do n't know the ' preparedness ' 

of the Indian gov't to deal with this . ]joint 

 

+Layout annotations: 

[For this question I do n't know the ' preparedness '

 of the Indian gov't to deal with this . ]joint 
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Adding annotations to vectors 
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Can we get everything from text? 

 Maybe not: 
 Humans use more than just text 

 Some things don’t ‘anchor’ well to text (text!=embeddings) 

 Sometimes text is identical – but other categories matter 

 More than text may be more efficient either way 
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Conclusion 

 Good times to be working on discourse! 

 Multiple layers expose complex interdependencies 

 Older ideas in computational discourse models are 
now more feasible: 
 From co-occurrence statistics to contextualized RNN outputs 

 Integrating cues from different levels without overfitting 

 

 We still need new data and new learning approaches! 
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Thanks! 
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 Margaret Anne Rowe 

 Margaret Borowczyk 

 Maria Stoianova 

 Mariko Uno 

 Mary Henderson 

 Maya Barzilai 

 Md. Jahurul Islam 

 Michaela Harrington 

 Minnie Annan 

 Mitchell Abrams 

 Mohammad Ali 
Yektaie 

 Naomee-Minh Nguyen 

 Nicholas Workman 

 Nicole Steinberg 

 Rachel Thorson 

 Rebecca Childress 

 Ruizhong Li 

 Ryan Murphy 

 Sakol Suethanapornkul 

 Sean Macavaney 

 Sean Simpson 

 Shannon Mooney 

 Siddharth Singh 

 Siyu Liang 

 Stephanie Kramer 

 Sylvia Sierra 

 Timothy Ingrassia 

 Wenxi Yang 

 Xiaopei Wu 

 Yang Liu 

 Yilun Zhu 

 Yingzhu Chen 

 Yiran Xu 

 Young-A Son 

 Yushi Zhao 

 Zhuxin Wang 

 … and others who wish 
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