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Discourse relations

= Some questions:

What relations exist? (Knott 1996, Knott & Sanders 1998)

* Cross-linguistically? (van der Vliet & Radeker 2014)
* |n genres? (Taboada & Lavid 2003)

How are relations marked? (Taboada & Das 2013)
» Explicit signals: “on the other hand” or “although”
* Implicit signals: coreferent mentions, genre conventions, ...

" To answer these questions we build
discourse annotated corpora
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Discourse annotation

= The task — given an arbitrary text:
Segment into ‘units’ (a.k.a. Elementary Discourse Units)
Establish the connections between these EDUs
Classify these connections

=" Three main frameworks have implemented these tasks:

Penn Discourse Treebank (PDTB, Prasad et al. 2008) — partial parses

Segmented Discourse Representation Theory (SDRT, Asher & Lascarides
2003) — complete DAGs

Rhetorical Structure Theory (Mann & Thompson 1988) — complete trees

| SDRT - Annodis corpus

| (Afantenos et al. 2010) PDTB V2 (Prasad et al. 2008)



Rhetorical Structure Theory

= |In RST, a text is a tree of clauses

Syntax trees RST trees
head > expansion nucleus > satellite
Leaf = token Leaf = EDU
Non-terminal = phrase Non-terminal = span
Grammatical function Discourse function
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Trying it out - what are these?

" Find the direction and label — choose from:
cause
purpose ?
elaboration
concession

||::|:|r||::e:;.:5i|:|r| ¥ | | glaboration ¥ |
® 26 @ ® 27 @
o8 03 o 5

Owing to its Lodz has an b 6dz today may  however | there is The city They were usually

history | impressive not have the glitz a certain charm to residences situated next to
collection of and glamour of its £6dz in its partially became the owner 's
residential heyday - renovated expressions of the factory
commercial and - facades and riches and power
industrial 19th- leitmotivs | of the local
century tycoons .
architecture
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Why is this important?

L evidence

2.3 |ldentify

specific
concession condition relations (|R)
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http://www.sfu.ca/rst/
http://www.sfu.ca/rst/
http://www.sfu.ca/rst/

Topics for today

= \What information identifies relations?

* For humans
* For NLP

 How much of the information is ‘explicit’?
(cf. Sporleder & Lascarides 2005, 2008, Taboada 2009)

" Can we identify relations directly from text?

* Do machine learning algorithms and humans notice the
same signals?

* If/when not, why? What features do we miss?
e Can we add them as new layers to our corpus data?

= \What data can we use?

Feature Rich Models for Discourse Signaling CLSP Seminar, JHU




= 180K tokens (WSJ)
= POS + syntax trees

" 60% overlap with OntoNotes: (Hovy et al. 2006)
NER (named entities only)
Partial coreference (no singletons, indefinites)
PropBank annotations
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Georgetown University Multilayer corpus
(Zeldes 2017)

= POS tagging (PTB, CLAWS, TT, UPQOS)
= Sentence type (SPAAC++)

= Document structure (TEI)

= Syntax trees (PTB + Stanford + UD)

= |nformation status (SFB632)

= (Non-) named entity types

= Coreference + bridging

= Speaker information, ISO time...

text type source texts
Academic Various 6
Biographies Wikipedia 6
Fiction Small Beer Press 7
Interviews Wikinews 19
News Wikinews 21
Travel guides Wikivoyage 17
Forum discussions reddit 6
How-to guides wikiHow 19
Total 101



http://corpling.uis.georgetown.edu/gum/
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Explicit signals




= Studies often cross-tabulate: words ~ relations

Frequentist approaches

=" Problems:
.
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Text to labels approach

" The core idea of our work is to learn a
transformation from a bag-of-words surface
representation into a latent space in which
discourse relations are easily identifiable.

e Ji & Eisenstein (2014:13)

" Echoed in much NLP in recent years:
text -> labels

But really:
text -> embeddings <--> labels
(cf. Braud et al. 2016)
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Relation classification with RNNs

=" RNNSs can recognize relations from text
(Braud et al. 2017; cf. entailment work, Rocktaschel et al. 2016)

= Can use encoder architecture, single output
multinomial classifier

0 condition
logits =
ogi 3
Q
X
RNN RNN RNN RNN
What were the
signals?
If we were fish
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A neural approach to signals with RNNs

2 2 condition
A A A S

0 0 0 A



Implemented with Bi-LSTM (TensorFlow)




Adding CRF (Huang et al. 2015, Ma & Hovy 2016)




Single output performance

" Not so interesting, but:

RSTDT — relation accuracy by tokens:
acc: 47.43% | f1: 41.44

 Standard train/test split
* 60 relations [some very rare] — note majority baseline is ~¥33%

= State of the art on RSTDT, hard to compare:

Ji & Eisenstein (2014), using engineered features, full
parsing: 61.75% (by EDUs, 18 relations)

Braud et al. (2016), (2017) with RNNs, pretraining on
PDTB, coref and more:

60.01% (by EDUs, 18 relations)
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Visualizing token-wise softmax

" Basic idea — find the most ‘convincing’ tokens:

Use tokens' softmax probability of correct relation
Shade by:

* Proportion of maximum softmax
probability in sentence

* Proportion of maximum softmax
probability in document

How good
am | in sent?

w

am | in doc?
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Visualizing token-wise softmax

[This occurs for two reasons : ] enaration [AS It

moves over land ,]ircumstance |

]cause

[Combine 50 milliliters of hydrogen peroxide and
a liter of distilled water in a mixing bowl . Jeeqyence
[A ceramic bowl will work best ,].jporation [PUL

_ | Ambiguous? GUM
plastic worksTo0 -J;oncession data
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Addressing ambiguity

=" \We can get ambiguity scores based on range of
softmax probabilities (data: GUM)

ct_relation)

D
=
o]

._L‘ .
o

but i 5 when When
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Addressing ambiguity

Irrelevant ‘and’s: (RST-DT)

= [but will continue director and chairman of the executive
committee -]elaboration

| began Nasdaqg/National
last week -]inverted
Important ‘and’s: (RST-DT)

= [and is involved in claims adjustments for insurance
companies . |, i

"1

]elaboration
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Evaluating plain text signals

" There results are qualitative, non-systematic

" |deal scenario - compare to ‘gold standard’
Use RST-DT Signalling Corpus (Taboada & Das 2013)

Open ended annotation of any kind of relation signal:
e Discourse markers, other expressions

e Syntactic devices, cohesion

* Genre conventions...
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Evaluating signals

[ | P ro b | e m S O @ Signal analysis for: All_Files/wsj_0600.txt
Signals annotated (Root (span 1 3)
( Nucleus (leaf 1) (rel2par span) (text _!Spencer J. Volk, president
at nOde |eve| and chief operating officer of this consumer and industrial products
company, was elected a director._1))
™ 71 ( Satellite (span 2 3) (rel2par elaboration-additional)
N on t.rIVI d I to ( Nucleus (leaf 2) (rel2par span) (text _IMr. Volk, 55 years old,
succeeds Duncan Dwight,_!) )
CEN C Iate W It h ( Satellite (leaf 3) (rel2par elaboration-additional-e) (text _Iwho -
specific EDUs e T T T T T
. ° Gl
Location of signal -
in words is not
specified Signalling Corpus in UAM

(O’Donnell 2008)
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Toy evaluation

Senator Byrd



Results

= Network ranks all words (low precision if O signals)
= Use recall rate @k to evaluate

All token-anchored signals Resolvable signals only
1 1
0.9 0.9
0.8 0.8
0.7 0.7
0.6 0.6
0.5 0.5
0.4 0.4
0.3 0.3
0.2 0.2
0.1 0.1
0] 0
re1 re2 re3 re1 re2 re3
®RNN mchance ®RNN mchance
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Can we get at ‘non-resolvable’ cases?

= A plain text RNN can’t see many things:

Repetition ——=

* Lexical entity coreference PN

e Pronoun resolution e
* Restatements... corty tingwa._ togathor ke up

spendonis rent the bulk of what

NOn-tOken Slgnals and advertising , we spend .
* Syntax clause types and attachment
e Zero relatives, other ‘meaningful absences’

Genre (is that ‘inside’ the text already?)
Graphical layout (images, fonts, headings, ...)
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Adding annotations to vectors

eI;b eI;b eI;b eI;b
3 N i

30



Adding annotations to vectors

Baseline: 25.58



Adding annotations to vectors

Baseline: 25.58



Genre

" Genres vary significantly in
communicative means

Quiz: guess which!

" Prior likelihoods of relations vary:

o Academic
- - o Bio

SO|UtionhQ0d interview news O F] Ct] O n
reg':/a{atl_gﬂé%rt] @) Inte rV] ew

e o News
_backg(r:gﬂﬁg o Reddit
cwcum_stance

Contraet o Voyage
o Wikihow

elaboration
purpose
ROOT

joint
preparation
sequence
condition
motivation
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2 teaspoons baking soda
1 teaspoon baking powder

Pinch of salt

Plain:
[1 teaspoon baking powder]joint 450ml (1-3/4 cup) unsweetened soy milk

+Genre: (whow)

[1 teaspoon baking powder]qin

Plain:
[It has lots of local boutiques...]y.p

+Genre: (voyage)

[It has lots of local boutiques... ],

Plain: 1 Vg

[I do n’t like the doctor , Jgq T

+Genre: (fiction) O\ Q
[I do n’t like the doctor , 1,4 S aureen t et
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Adding annotations to vectors

50
45
40
35
30

25 Baseline: 25.58
20

15
10
5
0

F-Score

text | genre |s_type| func | pos |entity | coref |layout| all
w test f1| 35.57 | 36.65 | 37.26 | 37.36 | 38.12
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POS and dependency function

" The same strings can mean different things:
meaning/NN is self-contained within the text
meaning/VVG as a first strike weapon

(cf. also ‘like’)

= Similarly for grammatical function:

] Empefor Joshua Norton;
He reemerged in September 1859 ... Wikipedia

Plain:
[laying claim to the position of Emperor of the United States . ],

+Deprel:
[laying claim to the position of Emperor of Lseq
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Adding annotations to vectors

50
45
40

35
30 I

25 Baseline: 25.58
20

15
10
5
0

F-Score

text | genre |s_type| func | pos |entity | coref |layout| all
w test f1| 35.57 | 36.65 | 37.26 | 37.36 | 38.12 | 37.14 | 39.14
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Coreference and entities

= Relationship between referential accessibility
and RST graph (Veins Theory, Cristea et al. 1998)

= Coreference likelihood can be predicted by
discourse parse (zeldes 2017b)

background v

39-42 (M

cause v

39-40 M 41-42 M

evidence A4 cause v

I_‘_I I+I
) 39 (M ) 40 (M ® 4@
®
| try to work on a ( we actually There 's not that so | try to cut the
very low budget , have equipment much moneyin  costs wherever
and like to build in the lab fundamental possible
most of the nicknamed the ' science at the
experimental Nickinator ' | ' I- moment |
setups myself Mick ' and the
MicktendoB4 ') .

® 42 @

sequence

43-55 (D)
D)

—

43-54 (D
D)

—

43-52 (D
- (1)

¥ | sequence

44-45 (D)
()

sequence ¥ | sequence ¥ | sequence ¥ | seqL
e b Tt

X) 47 (D) ® 48 (@
elaboration ¥
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I\ tunnelto a pot (  ants by preparing
the foraging a solution of the
45
® arena ) , where fungus Beauveria

e o the ants got the
qltt(): :ﬁ:ﬁ:oﬂ choice between
stone that you ;

can easily carve the food with

} o medwine and the
food without .
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Coreference and entities

" Again, different priors:

cause 1 Coref and entity resolution:
estatement 1 - Know pronoun entities

condition_r- - .
evidence_r- - Mentioned in RST parent?
restatement_m -
result r-
elaboration_r-

reen - Plain:
evaluation_r- [based on the knowledge

motivation_r-

solutionfood 1~ and skills they feel

concession_r - . .
contrast_m- librarians need ;]4
circumstance_r -
background_r-
antithesis_r -

——— +Coref+Entities:

preparation - [based on the knowledge

sequence_m~

joint_m - and skills they ., feel

ROOT-

0% 25% 50% 75% 100% librarians need ;]elab

Proportion
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Adding annotations to vectors

Baseline: 25.58



Graphical layout o

T

<list >
<item >

<head>

<S >

Method NN method
One CD One

of IN of

Two CD Two



Graphical layout

Plain:
[For this question | do n't know the ' preparedness '
of the Indian gov't to deal with this . ]

+Layout annotations:
[For this question | do n't know the ' preparedness '

of the Indian gov't to deal with this . ]

Knight: From all reports that | have

Morrissey: For this question | don't

1 Put on protective glass
good idea to not wear yol§ Plain:
over clothes you want protectg

'WN) | Despite

Richman: Since t

[Listenup, Kids :] was an expected

meant for children! higher the heat co

Tatpasically means g +Layout annotations:
don't really expose yo : : .
[Listen up, Kids : ],
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Adding annotations to vectors

Baseline: 25.58



Can we get everything from text?

= Maybe not:
Humans use more than just text
Some things don’t ‘anchor’ well to text (text!=embeddings)

Sometimes text is identical — but other categories matter
More than text may be more efficient either way

TXT
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Conclusion o8



Thanks!

joint ¥ | joint ¥ | joint i

@71 @ ® 72 @ ® 73 @

but | just wanted and thank you for and | wish you
to say thank you  making some much success
for your work sense of the with your work .’
successes and
failures



47

References

Afantenos, S./Denis, P./Muller, P./Danlos, L. 2010. Learning recursive segments for discourse parsing. LREC 2010, 3578—-3584.
Asher, N./Lascarides, A. 2003. Logics of Conversation. Cambridge: Cambridge University Press.

Braud, C./Coavoux, M./S@gaard, A. 2017. Cross-lingual RST discourse parsing. EACL 2017. Valencia, Spain, 292-304.

Carlson, L./Marcu, D./Okurowski, M. E. 2003. Building a discourse-tagged corpus in the framework of rhetorical structure theory. In
Current and New Directions in Discourse and Dialogue. Dordrecht: Kluwer, 85-112.

Cristea, D./Ide, N./Romary, L. 1998. Veins theory: A model of global discourse cohesion and coherence. ACL 98, 281-285.

Hovy, E./Marcus, M./Palmer, M./Ramshaw, L./Weischedel, R. 2006. OntoNotes: The 90% solution. In Proceedings of the Human
Language Technology Conference of the NAACL, Companion Volume: Short Papers. New York, 57—60.

Ji, Y./Eisenstein, J. 2014. Representation learning for text-level discourse parsing. ACL 2014. Baltimore, MD, 13-24.

Knott, A./Sanders, T. 1998. The classification of coherence relations and their linguistic markers. Journal of Pragmatics 30(2), 135—
175.

Mann, W. C./Thompson, S. A. 1988. Rhetorical Structure Theory. Text 8(3), 243-281.

Prasad, R./Dinesh, N./Lee, A./Miltsakaki, E./Robaldo, L./Joshi, A./Webber, B. 2008. The Penn discourse treebank 2.0. LREC 2008.
Marrakesh, Morocco.

Rocktaschel, T./Grefenstette, E./Hermann, K. M./Kocisky, T./Blunsom, P. 2016. Reasoning about entailment with neural attention.
International Conference on Learning Representations (ICLR 2016).

Stede, M./Grishina, Y. 2016. Anaphoricity in connectives: A case study on German. CORBON 2016. San Diego, 41-46.

Taboada, M./Das, D. 2013. Annotation upon annotation: Adding signalling information to a corpus of discourse relations. Dialogue
and Discourse 4(2), 249-281.

Taboada, M./Lavid, J. 2003. Rhetorical and thematic patterns in scheduling dialogues. Functions of Language 10(2), 147-179.

van der Vliet, N./Redeker, G. 2014. Explicit and implicit coherence relations in Dutch texts. In Gruber, H./Redeker, G. (eds.) The
Pragmatics of Discourse Coherence: Theories and applications. Amsterdam/Philadelphia: John Benjamins, 23-52.

Webber, B. L. 1988. Discourse Deixis: Reference to Discourse Segments. Technical Report, University of Pennsylvania.

Zeldes, A. 2017a. A distributional view of discourse encapsulation: Multifactorial prediction of coreference density in RST. In 6th
Workshop on Recent Advances in RST and Related Formalisms at INLG. Santiago de Compostela, Spain, 20-28.

Zeldes, A. 2017b. The GUM corpus: Creating multilayer resources in the classroom. LRE Journal 51(3), 581-612.



Thanks to GUM annotators! (so far)




