

Feature Rich Models for Discourse Signaling

Amir Zeldes

Georgetown University amir.zeldes@georgetown.edu

CLSP Seminar, JHU, 2018-02-23

Plan

I. Discourse Relations

- What are discourse relations?
- Rhetorical Structure Theory (RST) in a nutshell
- Datasets RST-DT and GUM
- II. Relation Signaling in Textual Data
 - Explicit and implicit relations
 - The RST Signalling Corpus
 - Finding signals in a text based model
- III. Rich features
 - Should we add annotations to embeddings?
 - Ablation studies with feature rich models

Discourse relations

What relations exist between utterances as a text unfolds?

a. [John pushed Mary.]_{cause} She fell.]
 b. [Mary fell. [John pushed her.]_{cause}]

(see Webber 1988, Asher & Lascarides 2003)

2. [[They left lights on]_{cause} so Ellie got mad.] [That's totally unreasonable]_{evaluation}]

Discourse relations

Some questions:

- What relations exist? (Knott 1996, Knott & Sanders 1998)
 - Cross-linguistically? (van der Vliet & Radeker 2014)
 - In genres? (Taboada & Lavid 2003)
- How are relations marked? (Taboada & Das 2013)
 - Explicit signals: "on the other hand" or "although"
 - Implicit signals: coreferent mentions, genre conventions, ...

To answer these questions we build discourse annotated corpora

Discourse annotation

The task – given an arbitrary text:

- Segment into 'units' (a.k.a. Elementary Discourse Units)
- Establish the connections between these EDUs
- Classify these connections

Three main frameworks have implemented these tasks:

- Penn Discourse Treebank (PDTB, Prasad et al. 2008) partial parses
- Segmented Discourse Representation Theory (SDRT, Asher & Lascarides 2003) complete DAGs
- Rhetorical Structure Theory (Mann & Thompson 1988) complete trees

Amélioration de la sécurité	e maire a invité les membres du consei l à élaborer le programme				
d'amélioration de le voirie com	nunale et de la sécurité routière pour l'année 1999 <mark>d'a ra</mark> ppel <mark>e</mark> t ue				
plusieurs automobilistes out qu Vaux des Fossés et qu'il convi	itté la châussée à intersection de la ROLO et du chemin rural de la				
panneau stop paraît être la form	ule la mieux adapté nour assure, et sourité des usagers. En				
délibérant l'essemblée a accesté la promosition du mainilit l'a chargé de faire établir nar les services SDRT – Annodis corpus					
(Afantenos et al. 2010)					

Rhetorical Structure Theory

In RST, a text is a tree of clauses Syntax trees

- head > expansion
- Leaf = token
- Non-terminal = phrase
- Grammatical function

RST trees

- nucleus > satellite
- Leaf = EDU
- Non-terminal = span
- Discourse function

Trying it out - what are these?

- Find the direction and label choose from:
 - cause
 - purpose
 - elaboration
 - concession

Why is this important?

(example from RST Website: http://www.sfu.ca/rst/)

Feature Rich Models for Discourse Signaling

Topics for today

What information identifies relations?

- For humans
- For NLP
- How much of the information is 'explicit'? (cf. Sporleder & Lascarides 2005, 2008, Taboada 2009)

Can we identify relations directly from text?

- Do machine learning algorithms and humans notice the same signals?
- If/when not, why? What features do we miss?
- Can we add them as new layers to our corpus data?

What data can we use?

RST Discourse Treebank (Carlson et al. 2003)

- 180K tokens (WSJ)
- POS + syntax trees

- 60% overlap with OntoNotes: (Hovy et al. 2006)
 - NER (named entities only)
 - Partial coreference (no singletons, indefinites)
 - PropBank annotations

Georgetown University Multilayer corpus (Zeldes 2017) <u>http://corpling.uis.georgetown.edu/gum/</u>

10

POS tagging (PTB, CLAWS, TT, UPOS)

- Sentence type (SPAAC++)
- Document structure (TEI)
- Syntax trees (PTB + Stanford + UD)
- Information status (SFB632)
- (Non-) named entity types
- Coreference + bridging
- Rhetorical Structure Theory
- Speaker information, ISO time...

text type	source	texts	tokens
Academic	Various	6	5,210
Biographies	Wikipedia	6	5,049
Fiction	Small Beer Press	7	5,912
Interviews	Wikinews	19	18,037
News	Wikinews	21	14,093
Travel guides	Wikivoyage	17	14,955
Forum discussions	reddit	6	5,174
How-to guides	wikiHow	19	16,920
Total		101	85,350

cccreative

II. Relation Signaling

Explicit signals

- Can we identify relations in data? (Sanders et al. 1992, Knott & Dale 1994, Taboada & Lavid 2003, Stede & Grishina 2016)
 Discourse markers however, but, if, and, as well as
 Adverbials clearly, supposedly, in reality...
 - Content words good (signals evaluation?), last year (signals temporal sequence? Circumstance?)

Annotators use cue words as diagnostics:

"could I connect these with 'because'?"

Frequentist approaches

Studies often cross-tabulate: words ~ relations

Problems:

- Frequency thresholds
- Ambiguity ("and" may not be associated with relations and appears with all relations – not a Discourse Marker?)
- Context sensitivity some words are cues in specific environments

Relation type	Freq	marker	translation		
Elaboration	150	kotoryj	"which, that"		
Joint	119	i, takzhe	and, as well		
		zajavil,	report, an-		
Attribution	118	soobschil	nounce etc.		
		Odnako, a,	However,		
Contrast	62	no	but		
			so, accord-		
		Poetomu,	ingly,		
Cause-Effect	47	V+prichina	V+cause		
		Chtoby,	In order that,		
Purpose	39	dlya	for		
		Nouns and			
		verbs ex-			
Interpretation-		pressing			
Evaluation	34	opinion			
		No domi-			
		nant mark-			
Background	31	er			
Condition	27	esli	if		
Table 1. Relations with their most frequent markers					

Toldova et al. 2017

Text to labels approach

 The core idea of our work is to learn a transformation from a bag-of-words surface representation into a latent space in which discourse relations are easily identifiable.
 Ji & Eisenstein (2014:13)

Echoed in much NLP in recent years:

text -> labels

 But really: text -> embeddings <--> labels (cf. Braud et al. 2016)

Relation classification with RNNs

- RNNs can recognize relations from text (Braud et al. 2017; cf. entailment work, Rocktäschel et al. 2016)
- Can use encoder architecture, single output multinomial classifier

Feature Rich Models for Discourse Signaling

A neural approach to signals with RNNs

The RNN probably already had it at *If...*

To find signals, we can listen to output at every token (but loss still based on EDU relation)

Implemented with Bi-LSTM (TensorFlow)

Adding CRF (Huang et al. 2015, Ma & Hovy 2016)

Single output performance

Not so interesting, but:

- RSTDT relation accuracy by tokens: acc: 47.43% | f1: 41.44
 - Standard train/test split
 - 60 relations [some very rare] note majority baseline is ~33%

State of the art on RSTDT, hard to compare:

- Ji & Eisenstein (2014), using engineered features, full parsing: 61.75% (by EDUs, 18 relations)
- Braud et al. (2016), (2017) with RNNs, pretraining on PDTB, coref and more: 60.01% (by EDUs, 18 relations)

Visualizing token-wise softmax

- Basic idea find the most 'convincing' tokens:
 Use tokens' softmax probability of correct relation
 - Shade by:
 - Proportion of maximum softmax probability in **sentence**
 - Proportion of maximum softmax probability in **document**

Visualizing token-wise softmax

[This occurs for two reasons :]_{preparation} [As it moves over land,]_{circumstance} [it is cut off from the source of energy driving the storm ...]_{cause} [Combine 50 milliliters of hydrogen peroxide and a liter of distilled water in a **mixing** bowl .]_{sequence} [A ceramic bowl will work best ,]_{elaboration} [but Ambiguous? plastic works **too** .]_{concession} GUM data

Addressing ambiguity

We can get ambiguity scores based on range of softmax probabilities (data: GUM)

Addressing ambiguity

Irrelevant 'and's: (RST-DT)

- [but will continue as a director and chairman of the executive committee .]_{elaboration}
- [and one began trading on the Nasdaq/National Market System last week .]_{inverted}

Important 'and's: (RST-DT)

- [and is involved in claims adjustments for insurance companies .]_{List}
- [-- and from state and local taxes too , for in-state investors .]_{elaboration}

Evaluating plain text signals

- There results are qualitative, non-systematic
- Ideal scenario compare to 'gold standard'
 - Use RST-DT Signalling Corpus (Taboada & Das 2013)
 - Open ended annotation of any kind of relation signal:
 - Discourse markers, other expressions
 - Syntactic devices, cohesion
 - Genre conventions...

Evaluating signals

Problems:

Signals annotated at node level

 Non trivial to associate with specific EDUs

 Location of signal in words is not specified

Toy evaluation

- 3 documents from Signalling Corpus (RST-DT/test)
 113 EDUs
 210 modes
 - 210 nodes
 - 153 signals manually inspected
 - Only 83 attributable to a/some tokens (not, e.g.: genre, zero relative, graphical layout...)

In a remark [someone should remember this time next year,]

 Only 47 reasonably detectable by net (not, e.g.: lexical chain, syntactic parallelism)
 Congress gave Senator Byrd's state ... [Senator Byrd is chairman..]

Results

Network ranks all words (low precision if 0 signals) Use *recall rate @k* to evaluate

All token-anchored signals

Resolvable signals only

Feature Rich Models for Discourse Signaling

III. Feature rich models

Can we get at 'non-resolvable' cases?

A plain text RNN can't see many things:

Repetition

- Lexical entity coreference
- Pronoun resolution
- Restatements...
- Non-token signals
 - Syntax clause types and attachment
 - Zero relatives, other 'meaningful absences'
- Genre (is that 'inside' the text already?)
- Graphical layout (images, fonts, headings, ...)

Feature Rich Models for Discourse Signaling

CLSP Seminar, JHU

Feature Rich Models for Discourse Signaling

Genre

Genres vary significantly in communicative means Prior likelihoods of relations vary:

Quiz: guess which!

- \circ Academic
- o Bio
- Fiction
- o Interview
- News
- Reddit
- Voyage
- Wikihow

Genre

Plain: [1 teaspoon baking powder]_{joint}

<u>+Genre: (whow)</u> [1 teaspoon baking powder]_{joint}

-] 1 teaspoon baking powder
- Pinch of salt
- 450ml (1-3/4 cup) unsweetened soy milk

wikiHow: How to Make Vegan Cupcakes

Plain:[It has lots of local boutiques...]
elab+Genre: (voyage)[It has lots of local boutiques...]
elab

Plain: [I do n't like the doctor,]_{elab} +Genre: (fiction) [I do n't like the doctor,]_{eval}

POS and dependency function

 The same strings can mean different things:
 meaning/NN is self-contained within the text
 meaning/VVG as a first strike weapon (cf. also 'like')

Similarly for grammatical function:

He reemerged in September 1859 ...

Plain:

[laying claim to the position of Emperor of the United States .]_{seq}

+Deprel:

[laying claim to the position of Emperor of the United States .]_{seq}

36

Emperor Joshua Norton; Wikipedia

Coreference and entities

 Relationship between referential accessibility and RST graph (Veins Theory, Cristea et al. 1998)
 Coreference likelihood can be predicted by discourse parse (Zeldes 2017b)

Coreference and entities

Again, different priors:

Coref and entity resolution:

- Know pronoun entities
- Mentioned in RST parent?

Plain:

[based **on** the knowledge and skills they feel librarians need ;]_{elab}

+Coref+Entities:

[based on the knowledge and skills **they**_{person} feel librarians need ;]_{elab}

Graphical layout

• We have TEI XML tags for:

- Paragraphs
- Headings
- Images and captions
- Ordered / unordered lists
- Beginning / end of list items

type="ordered">item n="1"><head>s type="other">Method NN methodOne CD Oneof IN ofTwo CD Two: : : :

41

...

Graphical layout

Plain:

[For this question I **do** n't **know** the ' preparedness ' of the Indian gov't to deal with this .]_{joint}

+Layout annotations:

[For this question I do n't know the ' preparedness ' of the Indian gov't to deal with this .]_{joint}

Knight: From all reports that I have Morrissey: For this question I don't

Put on protective glass good idea to not wear yo over clothes you want protecte meant for children!

> Listen up, kids: You'll b That basically means o don't really expose you

Plain: [Listen up , kids :]_{prep}

+Layout annotations: [Listen up , kids :]_{prep}

(((wn))) Despite

Richman: Since t was an expected a higher the heat co Category 5 cyclon

Feature Rich Models for Discourse Signaling

Can we get everything from text?

Maybe not:

- Humans use more than just text
- Some things don't 'anchor' well to text (text!=embeddings)
- Sometimes text is identical but other categories matter
- More than text may be more efficient either way

Conclusion

- Good times to be working on discourse!
- Multiple layers expose complex interdependencies
- Older ideas in computational discourse models are now more feasible:
 - From co-occurrence statistics to contextualized RNN outputs
 - Integrating cues from different levels without overfitting

We still need new data and new learning approaches!

Thanks!

References

- Afantenos, S./Denis, P./Muller, P./Danlos, L. 2010. Learning recursive segments for discourse parsing. *LREC 2010*, 3578–3584.
- Asher, N./Lascarides, A. 2003. *Logics of Conversation*. Cambridge: Cambridge University Press.
- Braud, C./Coavoux, M./Søgaard, A. 2017. Cross-lingual RST discourse parsing. *EACL 2017*. Valencia, Spain, 292–304.
- Carlson, L./Marcu, D./Okurowski, M. E. 2003. Building a discourse-tagged corpus in the framework of rhetorical structure theory. In Current and New Directions in Discourse and Dialogue. Dordrecht: Kluwer, 85–112.
- Cristea, D./Ide, N./Romary, L. 1998. Veins theory: A model of global discourse cohesion and coherence. ACL 98, 281–285.
- Hovy, E./Marcus, M./Palmer, M./Ramshaw, L./Weischedel, R. 2006. OntoNotes: The 90% solution. In Proceedings of the Human Language Technology Conference of the NAACL, Companion Volume: Short Papers. New York, 57–60.
- Ji, Y./Eisenstein, J. 2014. Representation learning for text-level discourse parsing. ACL 2014. Baltimore, MD, 13–24.
- Knott, A./Sanders, T. 1998. The classification of coherence relations and their linguistic markers. *Journal of Pragmatics* 30(2), 135–175.
- Mann, W. C./Thompson, S. A. 1988. Rhetorical Structure Theory. *Text* 8(3), 243–281.
- Prasad, R./Dinesh, N./Lee, A./Miltsakaki, E./Robaldo, L./Joshi, A./Webber, B. 2008. The Penn discourse treebank 2.0. *LREC 2008*. Marrakesh, Morocco.
- Rocktäschel, T./Grefenstette, E./Hermann, K. M./Kočiský, T./Blunsom, P. 2016. Reasoning about entailment with neural attention. International Conference on Learning Representations (ICLR 2016).
- Stede, M./Grishina, Y. 2016. Anaphoricity in connectives: A case study on German. *CORBON 2016.* San Diego, 41–46.
- Taboada, M./Das, D. 2013. Annotation upon annotation: Adding signalling information to a corpus of discourse relations. *Dialogue and Discourse* 4(2), 249–281.
- Taboada, M./Lavid, J. 2003. Rhetorical and thematic patterns in scheduling dialogues. *Functions of Language* 10(2), 147–179.
- van der Vliet, N./Redeker, G. 2014. Explicit and implicit coherence relations in Dutch texts. In Gruber, H./Redeker, G. (eds.) The Pragmatics of Discourse Coherence: Theories and applications. Amsterdam/Philadelphia: John Benjamins, 23–52.
- Webber, B. L. 1988. *Discourse Deixis: Reference to Discourse Segments*. Technical Report, University of Pennsylvania.
- Zeldes, A. 2017a. A distributional view of discourse encapsulation: Multifactorial prediction of coreference density in RST. In 6th Workshop on Recent Advances in RST and Related Formalisms at INLG. Santiago de Compostela, Spain, 20–28.
- Zeldes, A. 2017b. The GUM corpus: Creating multilayer resources in the classroom. *LRE Journal* 51(3), 581–612.

Thanks to GUM annotators! (so far)

- Adrienne Isaac
- Akitaka Yamada
- Amani Aloufi
- Amelia Becker
- Andrea Price
- Andrew O'Brien
- Anna Runova
- Anne Butler
- Ayan Mandal
- Brandon Tullock
- Brent Laing
- Candice Penelton
- Chenyue Guo
- Colleen Diamond
- Connor O'Dwyer
- Dan Simonson

- Didem Ikizoglu
- Edwin Ko
- Emily Pace
- Emma Manning
- 🔹 Han Bu
- Hang Jiang
- Hanwool Choe
- Hassan Munshi
- Ho Fai Cheng
- Jakob Prange
- Jehan al-Mahmoud
- Jemm Excelle Dela Cruz
- Joaquin Gris Roca
- John Chi
- Jongbong Lee
- Juliet May

- Katarina Starcevic
- Katherine Vadella
- 🔰 Lara Bryfonski
- Lindley Winchester
- Logan Peng
- Lucia Donatelli
- Margaret Anne Rowe
- Margaret Borowczyk
- Maria Stoianova
- Mariko Uno
- Mary Henderson
- Maya Barzilai
- Md. Jahurul Islam
- Michaela Harrington
- Minnie Annan
- Mitchell Abrams

- Mohammad Ali Yektaie
- Naomee-Minh Nguyen
- Nicholas Workman
- Nicole Steinberg
- Rachel Thorson
- Rebecca Childress
- Ruizhong Li
- Ryan Murphy
- Sakol Suethanapornkul
- Sean Macavaney
- Sean Simpson
- Shannon Mooney
- Siddharth Singh
- Siyu Liang
- Stephanie Kramer
- Sylvia Sierra

- Timothy Ingrassia
- Wenxi Yang
- Xiaopei Wu
- Yang Liu
- Yilun Zhu
- Yingzhu Chen
- Yiran Xu
- Young-A Son
- Yushi Zhao
- Zhuxin Wang
- ... and others who wish to remain anonymous!

Feature Rich Models for Discourse Signaling