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Questions 

What are discourse relations? 
Which ones exist? (Knott 1996, Knott & Sanders 1998) 

Distribution in genres? (Taboada & Lavid 2003) 

How are they marked? (Taboada & Das 2013)  
 Example: contrast 
• Explicit signals: “on the other hand” or “although” 
• Implicit signals: antonyms, coreferent mentions … 

 Easiest/hardest relations to identify? 
 Most/least reliable signals in context? 

 
To answer these questions we need to  

 annotate relations in corpora 
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DRs in Rhetorical Structure Theory 
(Mann & Thompson 1988) 

 

 

 

 

 

 

 

 

 

- See RST Website: http://www.sfu.ca/rst/ 

- Other frameworks: PDTB  (Prasad et al. 2008), SDRT (Asher & 
Lascarides 2003) 
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How are DRs 

marked? 

http://www.sfu.ca/rst/
http://www.sfu.ca/rst/
http://www.sfu.ca/rst/


Georgetown University Multilayer corpus 
(Zeldes 2017) 

 POS tagging (PTB, CLAWS, TT, UPOS) 
 Sentence type (SPAAC++) 
 Document structure (TEI) 
 Syntax trees (PTB + Stanford + UD) 
 Information status (SFB632) 
 (Non-) named entity types 
 Coreference + bridging 
 20 DRs in Rhetorical Structure Theory 
 Speaker information, ISO time… 

text type source texts tokens 

Academic Various 6 5,210 

Biographies Wikipedia 6 5,049 

Fiction Small Beer Press 7 5,912 

Interviews Wikinews 19 18,037 

News Wikinews 21 14,093 

Travel guides Wikivoyage 17 14,955 

Forum discussions reddit 6 5,174 

How-to guides wikiHow 19 16,920 

Total 101 85,350 

http://corpling.uis.georgetown.edu/gum/  
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Frequentist approaches to DR markers 

Studies often cross-tabulate: words ~ relations 

Problems:  
 Frequency thresholds 

 Ambiguity 
• “and” appears in all relations –  

not a Discourse Marker? 

• Context sensitivity – some words  
are cues in specific environments 
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Toldova et al. 2017 
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Relation classification with RNNs 

Recurrent Neural Networks can identify relations 
(e.g. Braud et al. 2017) 

Words vectors are fed to an encoder 

Multiclass classification 
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RNN RNN RNN RNN 

encoder 

condition 0.6 

cause 0.2 

contrast 0.1 

    If       we          were  fish 

What were the 

signals? 
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Word 

vectors 



Relation classification with RNNs 

The RNN probably already had it at If… 

We can listen to output at every token 
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RNN RNN RNN RNN 

encoder 

    If       we          were  fish 
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condition 0.6 

cause 0.2 

contrast 0.1 

p(rel)->signal 



Bi-LSTM CRF (Huang et al. 2015, Ma & Hovy 2016) 
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if we were fish 

cond cond cond cond 

LSTM LSTM LSTM LSTM 

LSTM LSTM LSTM LSTM Forward  
LSTM 

Backward 
LSTM 

CRF 

Hidden:  200 

Optimizer:  Adam 

(rec.) dropout:  0.5 

Minibatch:  20 

Activation:  tanh 

 

Batch normalization 

Trainable embeddings 

Character 
embeddings 

Word 
embeddings 
(GloVe 300, 

Pennington et 
al. 2014) 
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Long-Short Term 

Memory network 

Conditional Random 

Fields -> globally 

optimal solution 



Visualizing RNN predictions 

Basic idea – find the most ‘convincing’ tokens: 
Use tokens' probability of correct relation 

 Shade by: 
 

 

 

 

 
 

More formally: 

• p/max(softmax(sent)) 

• p/max(softmax(document)) 
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Visualizing RNN predictions 

 [This occurs for two reasons :]preparation [As it 

moves over land ,]circumstance [it is cut off from the 

source of energy driving the storm …]cause 

 [Combine 50 milliliters of hydrogen peroxide and 

a liter of distilled water in a mixing bowl .]sequence 

[A ceramic bowl will work best ,]elaboration [but 

plastic works too .]concession 
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Data: 

GUM 

Do humans agree? 
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Does the RNN find signals like a human? 

Evaluate on sample from RST Signalling Corpus 
(Taboada & Das 2013) 

 210 relations 

 153 signals 
• Only 83 attributable to words! 

(not: genre, zero relative, graphical layout…) 

 In a remark [someone should remember this time next year,] 

• Only 47 are lexical items! 
(not: lexical chain, syntactic parallelism) 

 Congress gave Senator Byrd's state … [Senator Byrd is chairman..] 
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Does the RNN find signals like a human? 

Use recall rate @k to evaluate 
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Data:  

Signaling Corpus 



Suppose the RNN really flags signals… 

Can we: 
Get ‘signal strength’ for words? 

 Ambiguity scores? 

Most ‘signally’ relations? 

 Variation across genres? 
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Assessing ambiguity 

We can get ambiguity scores based on the range 
of probabilities each word gets 
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Data: 

GUM 



Assessing ambiguity 

 Irrelevant ‘and’s: (Wall Street Journal) 

 [but will continue as a director and chairman of the executive 
committee .]elaboration  

 [and one began trading on the Nasdaq/National Market System 
last week .]inverted 

 Important ‘and’s: (Wall Street Journal) 

 [and is involved in claims adjustments for insurance 
companies . ]List 

 [-- and from state and local taxes too , for in-state 
investors .]elaboration 
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Is this a 

‘news’ thing? What about 

signals that 

aren’t words? 



Giving the network more than words 
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text genre s_type func pos entity coref layout all
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Baseline: 25.58 
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Data: 

GUM 



Relations across genres 

DR probabilities vary by genre, sentence type… 

Even for the same ‘sentence’ – think of “Yes.” 
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Examples – learning from more than text 
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Plain: 

[1 teaspoon baking powder]joint 

 

+Genre or Layout: (whow) 

[1 teaspoon baking powder]joint 

wikiHow: How to Make Vegan Cupcakes 
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Which genres signal most strongly? 
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Confounds: 

• Data size 

• Relations 



Which relations are hardest? 
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Are markers the 

same across genres? 



Top signals – overall  

 

 

 

 

 

 

 

 

How stable are these markers across genres? 
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• If 

• you 

• if 
condition 

• minutes 

• then 

• add 
sequence 

• ? 

• you 

• Do 
solutionhood 

• NUM (=year, day, …) 

• month 

• before 
circumstance 



• If 

• you 

• if 

• Pour 

• add 

• minutes 

• ? 

• Impact 

• failure 

• After 

• When 

• Once 

wikihow 

• If 

• when 

• if 

• woke 

• jumped 

• fell 

• want 

• ? 

• Do 

• when 

• outside 

• morning 

Top signals – different genres 
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• If 

• you 

• if 
condition 

• minutes 

• then 

• add 

sequence 

• ? 

• you 

• Do 

solutionhood 

• NUM 

• month 

• before 

circumstance 

fiction 

<N/A> 

• became 

• died 

• August 

<N/A> 

• when 

• After 

• war 

bios overall 



Conclusion 

Relation signaling is complex, genre specific 
Many signals are lexical, not function words 

New models go substantially beyond frequentist 
approaches 

Computational models of discourse signals can: 
 Inform relation inventory development and corpus 

annotation schemes 

 Improve automatic discourse parsing 

Help develop new theories about DR processing 
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Thanks! 
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to remain anonymous! 
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