

A Neural Approach to Discourse Relation Signaling

Amir Zeldes

Georgetown University amir.zeldes@georgetown.edu

Questions

- What are discourse relations?
- Which ones exist? (Knott 1996, Knott & Sanders 1998)
- Distribution in genres? (Taboada & Lavid 2003)
- How are they marked? (Taboada & Das 2013)
 - Example: contrast
 - Explicit signals: *"on the other hand"* or *"although"*
 - Implicit signals: antonyms, coreferent mentions ...
 - Easiest/hardest relations to identify?
 - Most/least reliable signals in context?

To answer these questions we need to annotate relations in corpora

DRs in Rhetorical Structure Theory (Mann & Thompson 1988)

- See RST Website: <u>http://www.sfu.ca/rst/</u>
- Other frameworks: PDTB (Prasad et al. 2008), SDRT (Asher & Lascarides 2003)

2

Georgetown University Multilayer corpus (Zeldes 2017) <u>http://corpling.uis.georgetown.edu/gum/</u>

- POS tagging (PTB, CLAWS, TT, UPOS)
- Sentence type (SPAAC++)
- Document structure (TEI)
- Syntax trees (PTB + Stanford + UD)
- Information status (SFB632)
- (Non-) named entity types
- Coreference + bridging
- 20 DRs in Rhetorical Structure Theory
- Speaker information, ISO time...

text type	source	texts	tokens
Academic	Various	6	5,210
Biographies	Wikipedia	6	5,049
Fiction	Small Beer Press	7	5,912
Interviews	Wikinews	19	18,037
News	Wikinews	21	14,093
Travel guides	Wikivoyage	17	14,955
Forum discussions	reddit	6	5,174
How-to guides	wikiHow	19	16,920
Total mir Zeides / A Neural App	roach to Discourse Relat	101	85,350

Frequentist approaches to DR markers

Studies often cross-tabulate: words ~ relations

Problems:

- Frequency thresholds
- Ambiguity
 - "and" appears in all relations not a Discourse Marker?
 - Context sensitivity some words are cues in specific environments

Relation type	Freq	marker	translation			
Elaboration	150	kotoryj	"which, that"			
Joint	119	i, takzhe	and, as well			
		zajavil,	report, an-			
Attribution	118	soobschil	nounce etc.			
		Odnako, a,	However,			
Contrast	62	no	but			
			so, accord-			
		Poetomu,	ingly,			
Cause-Effect	47	V+prichina	V+cause			
		Chtoby,	In order that,			
Purpose	39	dlya	for			
		Nouns and				
		verbs ex-				
Interpretation-		pressing				
Evaluation	34	opinion				
		No domi-				
		nant mark-				
Background	31	er				
Condition	27	esli	if			
Table 1. Relations with their most frequent markers						

Toldova et al. 2017

Relation classification with RNNs

Recurrent Neural Networks can identify relations (e.g. Braud et al. 2017)

- Words vectors are fed to an encoder
- Multiclass classification

Amir Zeldes / A Neural Approach to Discourse Relation Signaling

GURT 2018, 2018-03-10

condition 0.6

Relation classification with RNNs

The RNN probably already had it at *If...*We can listen to output at every token

Amir Zeldes / A Neural Approach to Discourse Relation Signaling

Bi-LSTM CRF (Huang et al. 2015, Ma & Hovy 2016)

7

Visualizing RNN predictions

Basic idea – find the most 'convincing' tokens: Use tokens' probability of correct relation Shade by:

How good am I in sent? How good am I in doc?

More formally:

- p/max(softmax(sent))
- p/max(softmax(document))

Amir Zeldes / A Neural Approach to Discourse Relation Signaling

Visualizing RNN predictions

[This occurs for two reasons :]_{preparation} [As it moves over land,]_{circumstance} [it is cut off from the source of energy driving the storm ...]_{cause} [Combine 50 milliliters of hydrogen peroxide and a liter of distilled water in a **mixing** bowl .]_{sequence} [A ceramic bowl will work best,]_{elaboration} [but Do humans agree? plastic works too .] concession Data: GUM

Does the RNN find signals like a human?

Evaluate on sample from RST Signalling Corpus (Taboada & Das 2013)

- 210 relations
- 153 signals
 - Only 83 attributable to words! (not: genre, zero relative, graphical layout...)

In a remark [someone should remember this time next year,]

 Only 47 are lexical items! (not: lexical chain, syntactic parallelism)
 Congress gave Senator Byrd's state ... [Senator Byrd is chairman..]

Does the RNN find signals like a human?

Use recall rate @k to evaluate

Lexical items only

Data: Signaling Corpus

11

Amir Zeldes / A Neural Approach to Discourse Relation Signaling

Suppose the RNN really flags signals...

Can we:

- Get 'signal strength' for words?
- Ambiguity scores?
- Most 'signally' relations?
- Variation across genres?

Assessing ambiguity

We can get ambiguity scores based on the range of probabilities each word gets

Assessing ambiguity

Irrelevant 'and's: (Wall Street Journal)

- [but will continue as a director and chairman of the executive committee .]_{elaboration}
- [and one began trading on the Nasdaq/National Market System last week .]_{inverted}

Important 'and's: (Wall Street Journal)

- [and is involved in claims adjustments for insurance companies .]_{List}
- [-- and from state and local taxes too , for in-state investors .]_{elaboration}

Giving the network more than words

Amir Zeldes / A Neural Approach to Discourse Relation Signaling

GURT 2018, 2018-03-10

15

Data:

GUM

Relations across genres

DR probabilities vary by genre, sentence type... Even for the same 'sentence' – think of "Yes."

Amir Zeldes / A Neural Approach to Discourse Relation Signaling

Examples - learning from more than text

- 1 teaspoon baking powder
- Pinch of salt
- 450ml (1-3/4 cup) unsweetened soy milk

<u>Plain:</u>

[1 teaspoon baking powder]_{joint}

+Genre or Layout: (whow) [1 teaspoon baking powder]_{joint}

wikiHow: How to Make Vegan Cupcakes

17

Amir Zeldes / A Neural Approach to Discourse Relation Signaling

Which genres signal most strongly?

Amir Zeldes / A Neural Approach to Discourse Relation Signaling

GURT 2018, 2018-03-10

18

Which relations are hardest?

Amir Zeldes / A Neural Approach to Discourse Relation Signaling

GURT 2018, 2018-03-10

19

Top signals - overall

How stable are these markers across genres?

20

Amir Zeldes / A Neural Approach to Discourse Relation Signaling

Top signals - different genres

	overall	wikihow	fiction	bios
condition	• If • you • if	• lf • you • if	• If • when • if	<n a=""></n>
sequence	minutesthenadd	 Pour add minutes	• woke • jumped • fell	becamediedAugust
solutionhood	• ? • you • Do	• ? • Impact • failure	• want • ? • Do	<n a=""></n>
circumstance	• NUM • month • before	 After When Once	whenoutsidemorning	• when • After • war

Amir Zeldes / A Neural Approach to Discourse Relation Signaling

Conclusion

- Relation signaling is complex, genre specific
 - Many signals are lexical, not function words
 - New models go substantially beyond frequentist approaches

Computational models of discourse signals can:

- Inform relation inventory development and corpus annotation schemes
- Improve automatic discourse parsing
- Help develop new theories about DR processing

Thanks!

References

- Afantenos, S./Denis, P./Muller, P./Danlos, L. 2010. Learning recursive segments for discourse parsing. *LREC 2010*, 3578–3584.
- Asher, N./Lascarides, A. 2003. *Logics of Conversation*. Cambridge: Cambridge University Press.
- Braud, C./Coavoux, M./Søgaard, A. 2017. Cross-lingual RST discourse parsing. *EACL 2017*. Valencia, Spain, 292–304.
- Carlson, L./Marcu, D./Okurowski, M. E. 2003. Building a discourse-tagged corpus in the framework of rhetorical structure theory. In *Current and New Directions in Discourse and Dialogue*. Dordrecht: Kluwer, 85–112.
- Knott, A./Sanders, T. 1998. The classification of coherence relations and their linguistic markers. *Journal of Pragmatics* 30(2), 135–175.
- Mann, W. C./Thompson, S. A. 1988. Rhetorical Structure Theory. *Text* 8(3), 243–281.
- Prasad, R./Dinesh, N./Lee, A./Miltsakaki, E./Robaldo, L./Joshi, A./Webber, B. 2008. The Penn discourse treebank 2.0. LREC 2008. Marrakesh, Morocco.
- Stede, M./Grishina, Y. 2016. Anaphoricity in connectives: A case study on German. *CORBON 2016.* San Diego, 41–46.
- Taboada, M./Das, D. 2013. Annotation upon annotation: Adding signalling information to a corpus of discourse relations. Dialogue and Discourse 4(2), 249–281.
- Taboada, M./Lavid, J. 2003. Rhetorical and thematic patterns in scheduling dialogues. *Functions of Language* 10(2), 147–179.
- van der Vliet, N./Redeker, G. 2014. Explicit and implicit coherence relations in Dutch texts. In Gruber, H./Redeker, G. (eds.)
 The Pragmatics of Discourse Coherence: Theories and applications. Amsterdam/Philadelphia: John Benjamins, 23–52.
- Webber, B. L. 1988. *Discourse Deixis: Reference to Discourse Segments*. Technical Report, University of Pennsylvania.
- Zeldes, A. 2017. The GUM corpus: Creating multilayer resources in the classroom. *LRE Journal* 51(3), 581–612.

Thanks to GUM annotators! (so far)

- Adrienne Isaac
- Akitaka Yamada
- Amani Aloufi
- Amelia Becker
- Andrea Price
- Andrew O'Brien
- Anna Runova
- Anne Butler
- Arianna Janoff
- Ayan Mandal
- Brandon Tullock
- Brent Laing
- Candice Penelton
- Chenyue Guo
- Colleen Diamond
- Connor O'Dwyer

- Dan Simonson
- Didem Ikizoglu
- Edwin Ko
- Emily Pace
- 🗉 Emma Manning
- Ethan Beaman
- Han Bu
- Hang Jiang
- Hanwool Choe
- Hassan Munshi
- Ho Fai Cheng
- Jakob Prange
- Jehan al-Mahmoud
- Jemm Excelle Dela Cruz
- Joaquin Gris Roca
- John Chi

- Jongbong Lee
- Juliet May
- Katarina Starcevic
- Katherine Vadella
- Lara Bryfonski
- Lindley Winchester
- Logan Peng
- Lucia Donatelli
- Margaret Anne Rowe
- Margaret Borowczyk
- Maria Stoianova
- Mariko Uno
- Mary Henderson
- Maya Barzilai
- Md. Jahurul Islam
- Michaela Harrington

- Minnie Annan
- Mitchell Abrams
- Mohammad Ali Yektaie
- Naomee-Minh Nguyen
- Nicholas Workman
- Nicole Steinberg
- Rachel Thorson
- Rebecca Childress
- Ruizhong Li
- Ryan Murphy
- Sakol Suethanapornkul
- Sean Macavaney
- Sean Simpson
- Shannon Mooney
- Siddharth Singh
- Siyu Liang

- Stephanie Kramer
- Sylvia Sierra
- Timothy Ingrassia
- Wenxi Yang
- Xiaopei Wu
- Yang Liu
- Yilun Zhu
- Yingzhu Chen
- Yiran Xu
- Young-A Son
- 🖳 Yushi Zhao
- Zhuxin Wang
- ... and others who wish to remain anonymous!

Amir Zeldes / A Neural Approach to Discourse Relation Signaling

GURT 2018, 2018-03-10

25