ment directly on how the Indian
[I cannot common and for this cyclone .] concession [However,
(BBC etc.) were very encouraging]joint
(DE ·

A Multilayer View of Discourse Relation Graphs

Amir Zeldes Georgetown University

<u>amir.zeldes@georgetown.edu</u>

LTI Colloquium, CMU, 2017-11-10

Plan

I. Discourse parses in Rhetorical Structure Theory

- What are discourse relations?
- RST in a nutshell
- Dependency representations for RST

II. Discourse encapsulation

- Veins Theory and the Discourse Encapsulation Hypothesis
- The Georgetown University Multilayer corpus (GUM)
- A multifactorial model of discourse encapsulation
- III. Relation signaling
 - RST-DT and the RST Signalling Corpus
 - Training LSTMs for signal detection

Discourse relations

What relations exist between utterances as a text unfolds?

 a. [[John pushed Mary.]_{cause} She fell.]
 b. [[Mary fell. [John pushed her.]_{cause}] (see Webber 1988, Asher & Lascarides 2003)

2. [[[They left lights on]_{cause} so Ellie got mad.] [She hates that]_{background}]

Discourse relations

Some questions:

- What relations exist? (Knott 1996, Knott & Sanders 1998)
 - Cross-linguistically? (van der Vliet & Radeker 2014)
 - In genres? (Taboada & Lavid 2003)
- How are relations marked? (Taboada & Das 2013)
 - Explicit signals: "on the other hand" or "although"
 - Implicit signals: coreferent mentions, genre conventions, ...
- How do discourse relations constrain text organization? (Cristea et al. 1998, 1999; Tetreault & Allen 2003)

To answer these questions we build discourse annotated corpora

Discourse annotation

The task – given an arbitrary text:

- Segment into 'units' (a.k.a. Elementary Discourse Units)
- Establish the connections between these EDUs
- Classify these connections

Three main frameworks have implemented these tasks:

- Penn Discourse Treebank (PDTB, Prasad et al. 2008) partial parses
- Segmented Discourse Representation Theory (SDRT, Asher & Lascarides 2003) complete DAGs
- Rhetorical Structure Theory (Mann & Thompson 1988) complete trees

Amélioration de la sécurité	e maire a invité les membres du consei l à élaborer le programme			
d'amélioration de le voirie com	nunale et de la sécurité routière pour l'année 1999 <mark>d'a ra</mark> ppel <mark>e</mark> t ue			
plusieurs automobilistes ont quitté la claussée à intersection de la RDUDe et du chemin rural de la				
panneau stop paraît être la formule la mieux adapté n'our assura. Es surrité des usagers. En				
délibérant ll'assemblée a accesté la proposition du mainilit la chargé de faire établir par les services SDRT - Annodis corpus				
(Afantenos et al. 2010)				

Rhetorical Structure Theory

In RST, a text is a tree of clauses Syntax trees

- head > expansion
- Leaf = token
- Non-terminal = phrase
- Grammatical function

RST trees

- nucleus > satellite
- Leaf = EDU
- Non-terminal = span
- Discourse function

Why is this important?

(example from RST Website: http://www.sfu.ca/rst/)

A Multilayer View of Discourse Relation Graphs / A. Zeldes

CMU LTI Colloquium

Simplifying trees

We will care how far things are in the graphUsing non-terminal spans is problematic:

A Multilayer View of Discourse Relation Graphs / A. Zeldes

Dependency Representation

Following Hayashi et al. (2016), use Li et al.'s (2014) dependency interpretation*

* conversion code available at: <u>https://github.com/amir-zeldes/rst2dep</u>

A Multilayer View of Discourse Relation Graphs / A. Zeldes

II. Discourse Encapsulation

Discourse Encapsulation Hypothesis

- Do discourse parses constrain referentiality?
 - Discourse as stack (Polanyi 1988, Roberts 2012)
 - Right Frontier Constraint (Asher & Lascarides 2003)
 - Veins Theory (Cristea et al. 1998)
 - Different parametrizations (Chiarcos & Krasavina 2008)

Applications: Coreference resolution Referring expression generation Dialog planning

Veins Theory (Cristea et al. 1998)

- VT proposes Domains of Referential Accessibility
 Nuclei 'see' the satellites along their "vein"
 - Satellites can't access satellites of other nuclei
 - Path length irrelevant
 - Test on 5 texts: (fra, rom, eng) ~100%

Or not?

12

Tetreault & Allen (2003:7):

 Our results indicate that incorporating discourse structure does not improve performance, and in most cases can actually hurt performance.

 Based on much larger RST Discourse Treebank (RST-DT, ~180K tokens, Carlson et al. 2003)
 Suggests VT does not work 'in the wild'

Research questions

- Can we treat DRAs as quantitative tendencies?
 - Not binary restriction: more <--> less access

Multifactorial

- Not just based on path
- Also consider surface distance, graph distance, and more
- Applicable to different types of referentiality?
 - Pronominal anaphora (The president ... he)
 - Lexical coreference (Joe Biden ... Joe, cf. TextTiling, Hearst 1997)
 - Bridging (*Mexico ... the economy*; previously unstudied, cf. Asher & Lascarides 1998, Poesio & Vieira 1998, 2000)

Data

- What could influence mention likelihood? (Recasens et al. 2013, Zeldes 2017a)
- We need:
 - RST parses
 - Coreference annotation (anaphora, lexical, bridging)
- Possible predictors:
 - Utterance length
 - Surface and 'Rhetorical' Distance metrics (SD, RD)
 - Syntactic structure (parses)
 - POS tags
 - Sentence types

...

Georgetown University Multilayer corpus

- POS tagging (PTB, CLAWS, TT)
- Sentence type (SPAAC++)
- Document structure (TEI)
- Syntax trees (PTB + Stanford)
- Information status (SFB632)
- (Non-) named entity types
- Coreference + bridging
- Rhetorical Structure Theory
- Speaker information, ISO time...

http://corpling.uis.georgetown.edu/gum/

text type	source	texts	tokens
Interviews (conversational)	Wikinews	19	18037
News (narrative)	Wikinews	21	14093
Travel guides (informative)	Wikivoyage	17	14955
How-tos (instructional)	wikiHow	19	16920
Total		76	64005

creative

A Multilayer View of Discourse Relation Graphs / A. Zeldes

CMU LTI Colloquium

Veins in dependency representation

Ancestry: Is one EDU a direct ancestor of the other in the dependency tree?

wikiHow: "How to Make a Glowstick"

A Multilayer View of Discourse Relation Graphs / A. Zeldes

CMU LTI Colloquium

Target variables

What are we trying to predict?

- Binary domains:
 - Is there coreference between two EDUs?
 - Explore for anaphora, lexical, bridging
- Coreference density:
 - How much coreferentiality exists between two EDUs? (# coreferent pairs)
- Direct and indirect antecedents:
 - Check if the **immediate antecedent** of entity in EDU2 is in EDU1 (NB: makes surface distance very important!)
 - Alternatively, just check for coreference

Experiment setup

~170K possible EDU pairs grouped by document
 Looking at distance and direct parentage:

A Multilayer View of Discourse Relation Graphs / A. Zeldes

Why is prediction weak despite intuition?

Lots of confounds!!

- Length: what if the main vein nucleus is really short?
 -> Unlikely to contain coreferent mentions
- Relations: Purpose --> less coref; Cause --> more:
 - needs to be exaggerated [in order to be funny]_{PURPOSE}
 - the banner read 'We Know'. [That 's all it said.]_{RESTATEMENT}
- Sentence type: imperatives, fragments have fewer entities than declaratives, questions
- ... + tense, genre, syntax, document position, ...

19

Go multifactorial!

Is RD significant? (any distance coref)

Yes, and so is surface distance and directness!But not as important as length

Random effe Groups 1 doc	ects: Name (Intercept)	Variance St 0.09789 0.	.3129	
Residual Number of o	obs: 172150,	0.82965 0. groups: c	.9109 doc, 76	Gaussian mixed effects model
Fixed effe	cts:			
	Estimate	e Std. Erroi	r t value	
(Intercept)) 0.2695836	5 0.0723038	3.73	
scale(len1)) 0.2043943	3 0.0023432	2 87.23	* * *
scale(len2)) 0.1833124	0.0023811	L 76.99	* * *
rhet dist	-0.0511588	3 0.0014351	L -35.65	* * *
edu dist	-0.0015377	0.0001168	3 -13.17	* * *
genrenews	-0.0348780	0.0997936	6 -0.35	
genrevoyage	e -0.2161897	0.1047555	5 -2.06	**
genrewhow	0.0969725	5 0.1016942	2 0.95	
directTrue	0 2280120	0 0091334	1 24 96	***

A Multilayer View of Discourse Relation Graphs / A. Zeldes

Which relations favor coreference?

Unsurprisingly: Cause, Restatement ■ ↓ Joint, Sequence Add to linear model??

CMU LTI Colloquium

Ensemble approach (RST workshop@INLG 2017)

Use Extra Trees ensemble (Geurts et al. 2006) Classification (coref yes/no) Regression (predict density)

features	RMSE (reg)	accuracy (clf)
majority	0.9652	77.90%
EDU	0.9501	78.36%
RD	0.9453	78.79%
all	0.7107	86.83%

What do the predictions look like?

We can visualize predictions as a heat map:

What do the predictions look like?

What do the predictions look like?

III. Relation signaling

Signaling

- Central question in discourse studies:
 - Cues help us to spot relations
 - Annotators use cue words as diagnostics:
 - "could I connect these with 'because'?"

 Many approaches to relation taxonomies rely on discourse markers – connectives and other adverbials (Sweetser 1990, Sanders et al. 1992, Knott & Dale 1994, Taboada & Lavid 2003, Stede & Grishina 2016)

Research questions

- What kinds of signals are there?
- How can we identify them in data?
 - Are signal words always meaningful?
 - How ambiguous are they?
 - Can we distinguish meaningful and non-meaningful uses of cues?

Frequentist approaches

Studies often cross-tabulate: words ~ relations

Problems:

- Frequency thresholds
- Ambiguity ("and" is not associated with any relation – not a Discourse Marker?)
- Context sensitivity some words are cues in specific environments

Relation type	Freq	marker	translation
Elaboration	150	kotoryj	"which, that"
Joint	119	i, takzhe	and, as well
		zajavil,	report, an-
Attribution	118	soobschil	nounce etc.
		Odnako, a,	However,
Contrast	62	no	but
			so, accord-
		Poetomu,	ingly,
Cause-Effect	47	V+prichina	V+cause
		Chtoby,	In order that,
Purpose	39	dlya	for
		Nouns and	
		verbs ex-	
Interpretation-		pressing	
Evaluation	34	opinion	
		No domi-	
		nant mark-	
Background	31	er	
Condition	27	esli	if
Table 1. Relations with their most frequent markers			

Toldova et al. 2017

Example - GUM		Where's "and "but"?		nd"?		30	
				contexts?			
	most distinctive collexemes by ratio						
relation	f > 0			f > 10			
solutionhood	viable, contributed, 60th, tou	iched,	What, ?, Why, did, How				
	Palestinians						
circumstance	holiest, Eventually, fell, Slate, transition			October, When, Saturday, After,			
	Thursday						
result	minuscule, rebuilding, distortions,			result, Phoenix, wikiHow, funny,			
	struggle, causing			death			
concession	Until, favoured, hypnotizing, currency			Although, While, though, Howeve			
		call					
justify	payoff, skills, net, Presidential, supporters			rs NATO, makes, simply, Texas, funny			
sequence	Feel, charter, ammonium, evolving, rests			bottles, Place, Then, baking, soil			
cause	malfunctioned, jams, benefiting, mandate			e because, wanted, religious,			
			pro	jects, stuff			

A neural approach with RNNs

 RNNs can recognize relations from text (Braud et al. 2017; cf. entailment work, Rocktäschel et al. 2016)
 Can use encoder architecture, single output

A Multilayer View of Discourse Relation Graphs / A. Zeldes

A neural approach with RNNs

But the LSTM probably already had it as *If...*To find signals, we can listen to output at every token (but loss still based on EDU relation)

A Multilayer View of Discourse Relation Graphs / A. Zeldes

Implemented with BiLSTM (TensorFlow)

A Multilayer View of Discourse Relation Graphs / A. Zeldes

Adding CRF (Huang et al. 2015, Ma & Hovy 2016)

A Multilayer View of Discourse Relation Graphs / A. Zeldes

CMU LTI Colloquium

Single output performance

Not so interesting, but:

- RSTDT relation accuracy by tokens: 47.43% | f1: 41.44
 - Standard train/test split
 - 60 relations [some very rare] note majority baseline is ~33%

State of the art on RSTDT, hard to compare:

- Ji & Eisenstein (2014), using engineered features: 61.75% (by EDUs, 18 relations)
- Braud et al. (2016), (2017) with RNNs, pretraining on PDTB, coref and more: 60.01% (by EDUs, 18 relations)

Visualizing token-wise softmax

Basic idea – find the most 'convincing' tokens:

- For each token, output the softmax probability assigned to the correct relation
- Rank words by probability
- Shade by average of:
 - Proportion of maximum softmax probability in sentence
 - Proportion of maximum softmax probability in **document**

Visualizing token-wise softmax

[This occurs for two reasons :]_{preparation} [As it moves over land,]_{circumstance} [it is cut off from the source of energy driving the storm ...]_{cause} [Combine 50 milliliters of hydrogen peroxide and a liter of distilled water in a **mixing** bowl .]_{sequence} [A ceramic bowl will work best ,]_{elaboration} [but plastic works too .]_{concession} GUM data

Visualizing token-wise softmax

Genre specific knowledge? (GUM)

[Thursday, May 7, 2015]_{circumstance} [The current flag of New Zealand.]_{preparation}

Word and character embeddings?

[I cannot comment directly on how the Indian government was prepared for this cyclone .]_{concession} [However, the news reports (BBC etc.) were very encouraging]_{joint}

Addressing ambiguity

Reliability of cue words is a big concern:

- Which cues can we trust?
- Which cues are we missing because of weak association?

Addressing ambiguity

We can get ambiguity scores based on range of softmax probabilities (data: GUM)

CMU LTI Colloquium

Addressing ambiguity

Irrelevant 'and's: (RST-DT)

- [but will continue as a director and chairman of the executive committee .]_{elaboration}
- [and one began trading on the Nasdaq/National Market System last week .]_{inverted}

Important 'and's: (RST-DT)

- [and is involved in claims adjustments for insurance companies .]_{List}
- [-- and from state and local taxes too , for in-state investors .]_{elaboration}

Evaluating signals

- There results are qualitative, non-systematic
- Ideal scenario compare to 'gold standard'
 - Use RST-DT Signalling Corpus (Taboada & Das 2013)
 - Open ended annotation of any kind of relation signal:
 - Discourse markers, other expressions
 - Syntactic devices, cohesion
 - Genre conventions...

Evaluating signals

Problems:

Signals annotated at node level

 Non trivial to associate with specific EDUs

 Location of signal in words is not specified

Toy evaluation

- 3 documents from Signalling Corpus (RST-DT/test)
 113 EDUs
 - 210 nodes
 - 153 signals manually inspected
 - Only 83 attributable to a/some tokens (not, e.g.: genre, zero relative...)

In a remark [someone should remember this time next year,]

 Only 47 reasonably detectable by net (not, e.g.: lexical chain, syntactic parallelism)
 Congress gave Senator Byrd's state ... [Senator Byrd is chairman..]

Results

Network ranks all words (low precision if 0 signals) Use *recall rate @k* to evaluate

All token-anchored signals

Resolvable signals only

Caveats and WIP

- Network not trained on gold standard (training on relations, not 'being a signal')
- Do we want supervised learning on signals?
- Other questions:
 - Can we compare signals across corpora and genres?
 - Are some signals more robust than others?
 - Genre-specific signals?
- Consequences for learning approach? ([Spencer Volk ...][Mr. Volk...]_{elaboration})

Conclusion

- Good times to be working on discourse!
- Multilayer data can expose complex interdependencies
- Some old ideas are now more feasible:
 - From Veins Theory to quantitative DRAs
 - From signal co-occurrence statistics to contextualized LSTM outputs
- We still need new data, new features and new learning approaches!

Thanks!

References

Asher, N./Lascarides, A. 1998. Bridging. Journal of Semantics, 15(1), 83–113.

- Asher, N./Lascarides, A. 2003. Logics of Conversation. Cambridge: Cambridge University Press.
- Braud, C./Coavoux, M./Søgaard, A. 2017. Cross-lingual RST discourse parsing. In *Proceedings of EACL 2017*. Valencia, Spain, 292–304.
- Braud, C./Plank, B./Søgaard, A. 2016. Multi-view and multi-task training of RST discourse parsers. In COLING 2016. Osaka, 1903–1913.
- Chiarcos, C./Krasavina, O. 2008. Rhetorical distance revisited: A parametrized approach. In Benz, A./Kühnlein, P. (eds.) *Constraints in Discourse*. Amsterdam/Philadelphia: John Benjamins, 97–115.
- Cristea, D./Ide, N./Marcu, D./Tablan, V. 1999. Discourse structure and co-reference: An empirical study. In *Proceedings of the Workshop on the Relationship Between Discourse/Dialogue Structure and Reference*. College Park, MD, 46–53.
- Cristea, D./Ide, N./Romary, L. 1998. Veins theory: A model of global discourse cohesion and coherence. In *Proceedings of ACL/COLING*. Montreal, Canada, 281–285.
- Geurts, P./Ernst, D./Wehenkel, L. 2006. Extremely randomized trees. *Machine Learning*, 63(1), 3–42.
- Hayashi, K./Hirao, T./Nagata, M. 2016. Empirical comparison of dependency conversions for RST discourse trees. In *Proceedings of the SIGDIAL 2016 Conference*. Los Angeles, CA, 128–136.
- Hearst, M. A. 1997. TextTiling: Segmenting text into multi-paragraph subtopic passages. *Computational Linguistics*, 23(1), 33–64.
- Hirao, T./Yoshida, Y./Nishino, M./Yasuda, N./Nagata, M. 2013. Single-document summarization as a tree knapsack problem. In *Proceedings of EMNLP 2013*. Seattle, WA, 1515–1520.
- Huang, Z./Xu, W./Yu, K. 2015. Bidirectional LSTM-CRF Models for Sequence Tagging.
- Ji, Y./Eisenstein, J. 2014. Representation learning for text-level discourse parsing. In *Proceedings of ACL 2014*. Baltimore, MD, 13–24.
- Knott, A. 1996. A Data-Driven Methodology for Motivating a Set of Coherence Relations. PhD Thesis, University of Edinburgh.
- Knott, A./Dale, R. 1994. Using linguistic phenomena to motivate a set of coherence relations. *Discourse Processes*, 18(1), 35–52.
- Knott, A./Sanders, T. 1998. The classification of coherence relations and their linguistic markers: An exploration of two languages. *Journal of Pragmatics*, 30(2), 135–175.
- Li, S./Wang, L./Cao, Z./Li, W. 2014. Text-level discourse dependency parsing. In *Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (ACL 2014)*. Baltimore, MD, 25–35.
- Ma, X./Hovy, E. 2016. End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF. In *Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (ACL 2016)*. , 1064–1074.
- Mann, W. C./Thompson, S. A. 1988. Rhetorical structure theory: Toward a functional theory of text organization. *Text*, 8(3), 243–281.
 O'Donnell, M. 2008. The UAM CorpusTool: Software for corpus annotation and exploration. In *Proceedings of AESLA*. Almeria, Spain, 3–5.
 Poesio, . M. Massimo/Vieira, . R. Renata 1998. A corpus-based investigation of definite description use. *Computational Linguistics*, 24(2), 183-216.

References

Polanyi, L. 1988. A formal model of the structure of discourse. *Journal of Pragmatics*, 12(5-6), 601–638.

Prasad, R./Dinesh, N./Lee, A./Miltsakaki, E./Robaldo, L./Joshi, A./Webber, B. 2008. The Penn discourse treebank 2.0. In *Proceedings of the 6th* International Conference on Language Resources and Evaluation (LREC 2008). Marrakesh, Morocco.

- Recasens, M./de Marneffe, M.-C./Potts, C. 2013. The life and death of discourse entities: Identifying singleton mentions. In *Proceedings of NAACL 2013*. Atlanta, GA, 627–633.
- Roberts, C. 2012. Information structure in discourse: Towards an integrated formal theory of pragmatics. *Semantics and Pragmatics*, 5(6), 1–69.
- Rocktäschel, T./Grefenstette, E./Hermann, K. M./Kočiský, T./Blunsom, P. 2016. Reasoning about entailment with neural attention. In International Conference on Learning Representations (ICLR 2016).
- Sanders, T. J. M./Spooren, W. P./Noordman, L. G. 1992. Towards a taxonomy of coherence relations. *Discourse Processes*, 15, 1–35.
- Stede, M./Grishina, Y. 2016. Anaphoricity in connectives: A case study on German. In *Proceedings of the Workshop on Coreference Resolution* Beyond OntoNotes (CORBON 2016). San Diego, CA, 41–46.
- Sweetser, E. 1990. From Etymology to Pragmatics: Metaphorical and Cultural Aspects of Semantic Structure. Cambridge: CUP.
- Taboada, M./Das, D. 2013. Annotation upon annotation: Adding signalling information to a corpus of discourse relations. *Dialogue and Discourse*, 4(2), 249–281.
- Taboada, M./Lavid, J. 2003. Rhetorical and thematic patterns in scheduling dialogues: A generic characterization. *Functions of Language*, 10(2), 147–179.
- Tetreault, J./Allen, J. 2003. An empirical evaluation of pronoun resolution and clausal structure. In Proceedings of the 2003 International Symposium on Reference Resolution and its Applications to Question Answering and Summarization. Venice, 1–8.
- Toldova, S./Pisarevskaya, D./Ananyeva, M./Kobozeva, M./Nasedkin, A./Nikiforova, S./Pavlova, I./Shelepov, A. 2017. Rhetorical relation markers in Russian RST treebank. In *Proceedings of the 6th RST Workshop*. Santiago de Compostela, Spain, 29–33.
- Vieira, . R. Renata/Poesio, . M. Massimo 2000. Corpus-based development and evaluation of a system for processing definite descriptions. In *Proceedings of the 18th conference on Computational linguistics*. Stroudsburg, PA: Association for Computational Linguistics, 899–903.
- van der Vliet, N./Redeker, G. 2014. Explicit and implicit coherence relations in Dutch texts. In Gruber, H./Redeker, G. (eds.) The Pragmatics of Discourse Coherence: Theories and applications. Amsterdam/Philadelphia: John Benjamins, 23–52.
- Webber, B. L. 1988. Discourse Deixis: Reference to Discourse Segments. Technical Report, University of Pennsylvania.
- Zeldes, A. 2017a. A distributional view of discourse encapsulation: Multifactorial prediction of coreference density in RST. In 6th Workshop on Recent Advances in RST and Related Formalisms. Santiago de Compostela, Spain.
- Zeldes, A. 2017b. The GUM corpus: Creating multilayer resources in the classroom. Language Resources and Evaluation, 51(3), 581–612.
 Zeldes, A./Simonson, D. 2016. Different flavors of GUM: Evaluating genre and sentence type effects on multilayer corpus annotation quality. In Proceedings of LAW X The 10th Linguistic Annotation Workshop. Berlin, 68–78.

Sentence type annotation

Extended version of SPAAC scheme (Leech et al. 2003; not created for this study)

tag	type	example		
q	polar yes/no question	Did she see it?		
wh	WH question	What did you see?		
decl	declarative (indicative)	He was there.		
imp	imperative	Do it!		
sub	subjunctive (incl. modals)	I could go		
inf	infinitival	How to Dance. Why not go?		
ger	gerund-headed clause	Finding Nemo. Hiring employees		
intj	interjection	Hello!		
frag	fragment	The End.		
ath ar	other predication	Nice, that!		
other	or combination	Or: 'I've had it, go!' (decl+imp)		

A Multilayer View of Discourse Relation Graphs / A. Zeldes

Only weak correlations...

For all EDU pairs:

- Most have 0 coreference
- Especially direct antecedents have very low distance
- Not much predictability (cf. Tetreault & Allen)

